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1. _TRODUCTION

This is the final report on National Aeronautics and Space Administration contract number

NAS8-30639 to study the effects on image quality of scattering due to irregularities in the optical

surfaces of the Large Space Telescope (LST). The objective of the study is to build a complete

model for the point spread function (PSF) of an astronomical telescope, one which is complete

enough to show the manner in which figure error, ripple, and surface microstructure in the optical

surfaces degrade image quality. The underlying purposes are to develop tools for use in analyz-

ing how well the surfaces of the primary and secondary mirrors of the LST should be finished to

assure adequate performance in the visible and ultraviolet wavelength ranges, and to evaluate the

relative importance of figure error, ripple, and surface microstructure in degrading image quality.

Image quality requirements for the LST are more stringent than those of any earlier tele-

scope. The absence of any intervening atmosphere means that the PSF will be defined by factors

internal to the telescope, including aberrations, manufacturing errors in the optical surfaces, and

pointing stability, rather than atmospheric turbulence. The absence of any intervening atmosphere

also allows operation at wavelengths down to perhaps 100 nanometers, which makes it more de-

sirable to minimize optical surface irregularities, due to their more critical effect at the shorter

wavelengths. The very large aperture diameter of the LST primary mirror makes it difficult

and very costly to achieve the nearly ideal surface finish desired to obtain the highest level of per-

formance at the shortest wavelengths involved. It is therefore important to have a means of model-

ing the telescope's image quality in the presence of mirror surface irregularities, so that quanti-

tative estimates can be made of the degree to which a given amount and type of mirror surface

irregularity will reduce image quality.

There is a considerable body of data as to the relationship between image quality and optical

surface figure error. Most of this data has been developed for application to aerial reconnais-

sance and related areas of imagery, where the objects are of low contrast, and the desire is to

resolve fine detail in a continuous tone image. In recent years, there have also been a number of

studies on the influence of surface microstructure on scattering at angles greater than 1 degree,

largely as a result of developments in the fields of high energy lasers and laser communication

systems. But there has been very little study of ripple or surface irregularities of characteris-

tic lateral dimensions between those of figure error and microstructure. These affect the point

spread function and scattering at angles between a few Airy radii and 1 degree, a region of inter-

est to astronomers. A more complete evaluation of the effects of ripple will be the principal

focus of this study. We will build a model for the PSF which includes quantitative estimates of

the degradation due to ripple, based on presently available data.

Fig. 1-1 represents our knowledge of the complete point spread function, as of the early

stages of this study, scaled to a 3.0-meter aperture diameter. The perfect lens diffraction pat-

tern and its envelope are well known, with the envelope being an inverse cubic function of its

1-1



radius, in the PSE is confined to two extremes. At the inner extreme,

the diffraction pattern for degraded lenses can be calculated out to a few Airy radii before the

accuracy limitations of the two-dimensional Fourier transform routines involved are reached.

[The programs involved use a wavefront (real or modeled) as an input, but define it with a grid
of sample points too widely spaced to show the effects of anything except figure error.] At the

outer extreme, scattering from mirror samples has been measured at angles greater than 1

degree, as represented by the three curves in the lower right corner of the figure. The only

measured data between these two extremes of which we are aware are the two star profiles of

King and Kormendy. It is difficult to evaluate their applicability to the LST, since they were
measured from silver halide photographs taken with ground based telescopes.

In this study, we pursue two paths to fill in the gap between 10 Airy radii and 1 degree.

The first, to which we devote the major effort, is to develop an improved computer program

capable of calculating the PSF out to 300 Airy radii or more, using a rotationally symmetric

wavefront containing very fine irregularities. The second is to develop a wide angle scatter func-

tion model which will permit extrapolation of data measured at angles greater than 1 degree in to

angles of a few arc-seconds. We will attempt to justify these models on the basis of data avail-
able from the literature and data obtained from other workers in the field. (In this latter regard,

we have been particularly fortunate in obtaining high resolution measurements of surface irregu-

larities in the 154-inch primary mirror for the Anglo-Australian Telescope.) We will also

recommend measurements where we feel the present data gives insufficient backing to the model.

The text of this report is divided into seven sections, including this introduction. Section 2

summarizes the report and gives conclusions. Section 3 reproduces the technical portion of the

statement of work. Sections 4, 5, and 6 correspond roughly to phases Ia, Ic, and Ib, respectively,

of the statement of work. Section 7 corresponds to phase l'I, part 2 of the statement of work. Re-

sults of the data survey of phase II, part 1 have been incorporated into the other sections, where

pertinent. Two of the more significant reports gathered in that survey are included as appendices

A and B.

Section 4 discusses the ripple analysis. The core of this analysis is a computer program

for computing the point spread function for a rotationally symmetric wavefront defined by 512

points spread along a radius. This was developed from an existing Itek program, which was modi-

fied to increase its accuracy, and to allow modeling of a wide variety of wavefront error patterns.

It allows computation of the PSF out to about 300 Airy radii, or 16 arc-seconds for the 3-meter

LST at its test wavelength. Section 4 presents a basic discussion of image formation in the pres-

ence of ripple as a foundation for our discussion of scattering by wavefront irregularities. These

results are used in examining the effects of random wavefront error on the PSF, and in analyzing

statistical models for image degradation based on wavefront autocollimatton models. The com-

puter program is used in an extensive analysis of ripple in the 154-inch (3.91-meter) aperture

primary mirror for the Anglo-Australian Telescope. From the latter data and the study of ran-

dom wavefronts, we build a model wavefront for the LST. We also use a separate computer pro-

gram to look at the specific problem of the corrugated, or "waffle" wavefront error which can
arise from the cellular structure of the Ughtweighted mirror structure.

Section 5 describes the wide angle scatter analysis. It opens with a brief description of

the most common model presently used to describe scattering by random surface irregularities.

Recent mirror scatter measurements are used to demonstrate that this model is not applicable to

scattering from optical surfaces. An empirical model for mirror scatter is developed, based on

results from the University of Arizona. This is then compared to results from other experi-

ments, and its wavelength scaling properties are defined on the basis of the phase grating diffrac-

tion theory described in Section 4. This scatter function model is used in developing a star pro-

file model. The latter is used in turn in a computer program for calculating the effective back-
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ground radiance contribution from starlight scattered from the primary mirror of the telescope.

Results computed with the latter are discussed_

Section 6 discusses the effects of mirror surface coatings on scatter from the mirrors.

This section is brief, since there is little quantitative data to indicate that there is any significant

effect, except in portions of the ultraviolet where surface plasmon coupling occurs. There is

insufficient data to evaluate the plasmon effects, but studies currently in progress will produce
new data in 1975.

Section 7 gives some recommendations for future experimental programs to measure

scattering and surface irregularities. Scattering measurements are discussed in terms of two

specific measurement techniques we feel are worth pursuing. Surface irregularity measurements

are discussed in terms of the type of data required, since a number of possible measurements

are possible, and no one tbchnique can measure the entire range of data required.

The two computer programs developed during this study are described in operating manuals

submitted separately. Brief descriptions are included in Sections 4.1 and 5.5.2.
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2. SUMMARY AND CONCLUSIONS

This section of the report summarizes the main text of the report, and gives the conclusions

drawn from the study. The material is presented in roughly the same order as in the main text.

Where a figure or table will aid in summarizing, it will be identified by number, rather than be

reproduced.

2.1 RIPPLE ANALYSIS

The computer program GASPR is a modified form of an existing Itek program for computing

PSF's from specific, rotationally symmetric wavefronts. The accuracy of the program was in-

creased by changing from a 96- to a 512-point Gaussian quadrature in solving the Hankle trans-

form. Itis capable of computing the PSF out to more than 300 Airy radii. Input options were ex-

panded to include 3rd, 5th, and 7th order spherical aberration, defocus and a central obstruction,

the original options, plus random wavefront error, sums of cosine phase gratings, sums of zonal

ridges and Gaussian apodization. The exact forms are defined by Eqs. 3 through I0. Arbitrary

(or real) wavefronts can be input by defining OPD values at evenly spaced radii. Outputs include

the PSF and encircled energy plots of the original program, plus effectiveradiance, MTF, MTF

degradation function, and *Autocorrelation$ function plots. Accuracy of the PSF is within round-

off error for a perfect lens. Accuracy of the other outputs depends on the radius increment and

truncation radius used in defining the PSF (see Table 4-I and Figs. 4-4 and 4-5). A program

listingand writeup have been supplied to the customer separately.

Any wavefront can be represented as a spectrum of cosine phase gratings of different spatial

frequency, phase amplitude, phase angle, and orientation. In principle, the diffractionfrom such

a wavefront can be represented as the summation of the diffracted wavefronts produced by the

component phase gratings. In practice, interactions between phase gratings of different spatial

frequency and the higher order sidebands of single spatialfrequency components make this very

difficultunless the phase amplitudes of the various components are very small, less than about

0.04 wavelength. The presence of figure error or a central obstruction will spread out energy

in the phase grating sidebands even at those low levels of wavefront error. These effects are

demonstrated by a series of examples using rotationally symmetric phase gratings, which may

be found in Section 4.2.

The interactions mentioned above make itdifficultto build a simple model for scattering

based on a one-to-one correspondence between a spectrum of cosine phase gratings and the

scatter function. However, this type of model makes itpossible to draw two conclusions which

fAn asterisk is used in "* Autocorrelation function" to indicate that this is an approxima-

tion to the true wavefront autocorrelation function, as discussed in connection with Eq. 14, in

Section 4.1.2.
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are very useful in scaling scatter function with wavelength, when the individual spatial frequency

components have small phase amplitudes. First, the scatter angle _ is related to the spatial

frequency component of period d by the grating equation sin _ = k/d. Thus, changing the wave-

length will change the angle at which the light is scattered such that

Sin _2 -- (_J_1) sin _:

The energy diffracted by the spatial frequency component is proportional to the square of the

phase amplitude, and thus is proportional to (kl/)_z) 2. The solid angle into which the light is

scattered is proportional to (_z/_l) 2. Therefore, the relative intensity scales as

The above conclusion has important consequences in defining a scatter function model, as

is discussed in Sections 2.4.2 and 5.3. Among the most interesting experimental consequences is

the implication that scatter measurements made at, say, 1 degree with 10.6-micrometer radia-

tion can be scaled to give visible light scattering at a few arc-minutes (see Fig. 5-14 for an ex-

ample).

The random wavefront model was used to investigate the relative effects on the PSF of

three wavefronts having the same net rms wavefront error and different correlation lengths, i.e.,

a different balance between figure error and ripple. The more significant results are shown in

Table 4-6, Fig. 4-27 (PSF's and encircled energies) and Fig. 4-28 (MTF's). Neither Strehl

definition nor high spatial frequency MTF (which determines continuous tone resolution limits)

are strongly affected by the shift in spatial frequency content. Encircled energy and the PSF are

very strongly degraded by the increase in high spatial frequency content (ripple). Thus reducing

ripple to a minimum is important for experiments requiring the diameter containing a given

encircled energy to be minimized.

A substantial amount of data has been provided to us by Grubb Parsons concerning the

surface quality of the 154-inch (3.91-meter) aperture primary mirror for the Anglo-Australian

Telescope. This consists of 20 radius profiles taken at 1-1nch increments. An extensive analy-

sis has been performed on this data, and is presented in Section 4.7. This includes some coarse

resolution two-dimensional analyses, plus use of individual radius profiles to define rotationally

symmetric wavefronts for use in GASPR. We have performed spatial frequency analyses of two

profiles and compared the resulting amplitude density functions to displaced energy functions

(in effect, scatter functions) computed from GASPR outputs (Figs. 4-56 through 4-59). The wave-

front error data has also been scaled to give performance at 325 and 121.5 nanometers in the

ultraviolet.

A number of observations can be drawn from the data on the A.A.T. primary. First, there

is a considerable amount of ripple in the mirror with periods on the order of a few inches, in

spite of the fact that the final polishing was done with a full aperture flexible lap. Second, there

is a net truly rotational component to the wavefront error, as determined by zonal averaging,

and some visual evidence that there may be somewhat higher elliptical ridges. (None of these

ridges seem to remain intact around the entire circumference, however.) Third, the Fourier

transforms of individual profiles show evidence of peaks in the spatial frequency spectrum.

The two profiles selected for closest study were radius 5A, chosen for its large high spatial

frequency component and lack of low spatial frequency irregularities, and radius 9, chosen for a

good mix of high and low spatial frequency components. Examination of the amplitude spectra

and displaced energy functions for these two cases illustrates a point made above: when only high

spatial frequency components of low phase amplitude are present, there is a fairly close one-to-
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one correspondence between features of the scatter function and the spatial frequency spectrum

of the wavefront irregularities. (Compare Figs. 4-56 and 4-5'/for radius 5A.) When large phase

amplitude, low spatialfrequency components are present, this relationship tends to break down,

due to interactions between components. (Compare Figs. 4-58 and 4-59 for radius 9.)

PSF and MTF data for the ultravioletwavelengths show how much image quality degradation

results from the figure error and ripple in this mirror. (Itwas never intended to operate at

those wavelengths, nor in turbulence-free outer space.) This gives some indication of what might

be expected from the LST, except in that the A.A.T. primary, with a wavefront error of 0.12

wavelength rms at 578 nanometers, has about twice the wavefront error that is expected for the

complete LST, which is to have a wavefront error of 0.06 wave rms at 633 nanometers. (Some

consideration is being given to relaxing that tolerance.)

To simulate the LST performance, we have taken an analytic model of the zonally averaged

wavefront for the A.A.T. telescope, added a higher spatial frequency random component, to simu-

late surface roughness, and scaled the rms wavefront error to match the projected values at

632.8, 325, and 121.5 nanometers. The results are given in Section 4.8. These represent the best

performance model for the LST which can be generated at present, based on the original perfor-

mance specifications. Data is presented for both the 3.0- and 2.4-meter aperture diameters

currently being considered (see Figs. 4-62 through 4-68).

Three additional tasks were performed as part of the ripple analysis. The first of these

tasks was a study of the effects of apodization in the presence of wavefront error. This is fre-

quently recommended as a technique for improving image quality, and it works well when no

aberrations are present (Fig. 4-33). But apodization affects only the pupil diffraction, and does

not reduce diffraction due to wavefront error at all (Fig. 4-34). Apodization may prove a valuable

technique for suppressing the diffraction pattern and bringing out the scatter function when mea-

suring the latter at very small scatter angles. We recommend its incorporation into the scatter

experiment discussed in Section 7.

The second added task was to examine the effects of a waffle-like surface deformation pat-

tern in the primary mirror which might result from elastic deformation of the front plate of the

lightweighted mirror during polishing or due to gravity release. In effect, this would emboss the

square or hexagonal structure of the mirror substrate core on the reflecting surface of the mir-

ror. The results of the study are shown in Fig. 4-37 and Tables 4-8 and 4-9. The values quoted

for the LST in Table 4-9 are based on a very simple model for the surface deformations, and may

therefore be pessimistic. In monochromatic light, the image defects take the form of a set of

eight false star images set in a square centered on the main image. (In white light, they will form

eight spectra extending radially outward fromthe central image.) The monochromatic images

will be substantially brighter than the diffraction pattern ring structure, and may reach to within

6 to 10 stellar magnitudes of the central image, depending on the wavelength. Clearly, this is a

problem which should be given more detailed consideration.

Finally, we looked at statistical models for the effects of ripple. This investigation was

confined largely to examining the validity of earlier statistical models based on a Gaussian auto-

correlation function. Our study indicates that the Gaussian model for the autocorrelation function

is faulty on formal mathematical grounds, and a very poor approximation for real mirrors from

a practical point of view. Practically speaking, the surface irregularities of a real mirror cover

too large a spatial frequency range to be well represented by a Gaussian autocorrelation function.
We were not able to define a more suitable model in the time we could devote to this topic. That

will have to wait for a future effort.

2.2 WIDE ANGLE SCATTER ANALYSIS

This study opened with an examination of the Beckmann model for scattering by random

surface irregularities, based on the Gaussian autocorrelation function (see Fig. 5-1). The Beck-
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mann model has to be rejected for the reasons cited in the section above: the surface irregulari-

ties contain too broad a range of spatial frequencies to be represented by a Gaussian autocorrela-

tion function. The star profiles of King and Kormendy (Figs. 5-2 and 5-3) and the scatter mea-

surements of the University of Arizona (Fig. 5-4) indicate that the real scatter function will have

a very long straight section (in log-log plots), which is incompatible with Gaussian theory. Auto-

correlation measurements by Michelson Laboratory confirm that the autocorrelation function is

non-Gaussian (Figs. 5-5 and 5-7).

We have generated an empirical model for the scatter function based on these observations.

This model assumes the scatter function to have a fixed slope over most angles--that is, scatter

is proportional to the (angle) -s, where s is a constant. The final form of the scatter function is

shown by Eq. 70 and Figs. 5-12 and 5-13. It includes provision for wavelength scaling of the type

discussed above. As a test of the model, we have scaled scatter data measured at 10.6 micro-

meters to 515 nanometers for comparison to University of Arizona data (see Fig. 5-14). The

results appear to be compatible with each other and with the model.

This scatter model has been applied to image illumination calculations for a Cassegrain

telescope to examine how the scatter functions of mirrors add. The results indicate that the form

of addition is a function of the slope of the scatter function and the axial beam diameters of the

mirrors involved. If s = 2.0, the scatter functions may be added directly, with only a correction

factor for the specular reflectivity of mirrors further along the train of optics. That is, if there

are n mirrors of specular reflectivity p, and the slope s = 2.0, then the total scatter coefficient
will equal np n-t times the scatter coefficient of a single mirror.

This scatter function, with s = 2.0, has been used to generate an equation for the star pro-

file, including the effects of diffraction. The result, Eq. 96, has been used to match the inverse

square curve of King (see Fig. 5-16). The indicated scatter coefficient Ps(al, )L1) = 0.085 is

large, when compared to Arizona data at the same angle and wavelength (sin _l = 0.10, kl =

514.5 nm). King and Kormendy's data is for a telescope with five optical surfaces. When this is

considered, the results make the King and Kormendy star profiles appear fully compatible with

mirror scattering at angles above 10 to 20 arc-seconds.

The MISCAT computer program was developed using the above star profile model, with

adaptations to account for off-axis vignetting in the telescope tube, to calculate the contributions

of field stars to the effective background radiance through scattering from the primary mirror.

The model used for the computation sets up a rectangular grid of star profiles based on stellar

population statistics, with each star profile weighted by a vignetting factor which is a function of

their angle off the axis of the telescope. Where each star profile intersects the axis of the tele-

scope, its relative intensity is added to that of all the other stars. The process is repeated for

all the stellar populations at each magnitude included in the run. The total sum gives the effec-

tive background radiance contributed by the stars in the portion of the sky whose population

statistics have been used.

This program was used with stellar population statistics for the galactic equator (see

Table 5-5), telescope parameters appropriate for the LST, and a variety of scatter coefficients.

The results are shown in Tables 5-6 through 5-8. This data indicates that telescope tube length

will have no appreciable effect on the background radiance contribution due to scattered starlight,

but that both the scatter coefficient and the wavelength will have an effect. In evaluating these

results, keep in mind that the darkest sky background expected in the visible spectrum is on the

order of 23.5 magnitudes per arc-second squared. The only data point that matches or exceeds

this value is for a wavelength of 121.5 nanometers and a scatter coefficient of 0.1. The latter is

much larger than is expected for the LST, at least with clean mirrors. We conclude from these

results that scattered starlight can be kept to tolerable levels without superpolishing the mirror,
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for the worst possible star backgrounds. For this reason, we have not made calculations for the

galactic poles, as called out in the statement of work.

2.3 EFFECTS OF MIRROR SURFACE COATINGS

There is insufficient data to specify the effects of surface coatings on the scatter function

quantitatively, and we therefore could not include them in the scatter function model. Qualitatively,

it is the feeling of workers in the field that the effects are negligible, where the only coatings are

the aluminum reflective layer and a protective coating of MgF2. There may be an exception to

this at wavelengths in the ultraviolet where surface plasmon effects cause absorption and re-

emission of some light. It has been demonstrated that roughening the optical surface will increase

the efficiency of plasmon coupling (see Fig. 6-1). This surface was roughened by crystallization

in an undercoating, however, and this is not considered representative of the roughness charac-

teristics of polished optical surfaces. Current thinking is that the problem is less severe than

implied by Fig. 6-1, but again, there is insufficient quantitative data. Michelson Laboratory is

involved in an experimental program to measure ultraviolet scattering from aluminized mirrors,

and better answers should be available in the near future.

2.4 FUTURE EXPERIMENTAL MEASUREMENTS PROGRAM

The wide angle scatter function model discussed above is based on a linear extrapolation

of scatter measurements made at angles greater than 1 degree. This extrapolation involves an

assumption as to the nature and size of surface irregularities in the ripple domain, and there is

no concrete proof that this assumption is correct. It is important that scatter measurements be

made at angles within the range of 1 arc-second to 1 degree to confirm or refute the validity of

the scatter function model. It is also important to make direct measurements of the mirror sur-

face irregularities associated with scatter at these angles to better understand the scatter mech-

anism.

Only two techniques seem to offer the hope of adequate scatter measurements. One is the
center of curvature scatter measurements experiment described in Section 7.1.1. Coupling this

with the illumination apodization technique described in Section 4.5 should make it possible to

measure scattering successfully down to angles of a few Airy disk diameters. The second tech-

nique is to make measurements at a number of wavelengths from the same sample, and scale

them to the shortest measured wavelength by the technique described above. This would not only

serve to give narrow angle measurements of scattering at short wavelengths, but would also serve

to check the validity of the scatter function model, and to check for instrumentation errors in

regions where the scaled scatter functions overlap.

A variety of experimental techniques can be useful in measuring surface irregularities, but

no one will cover the range of measurements we think is required. To cover all scales of surface

irregularities which can effect scattering in the visible and ultraviolet requires measurements

with lateral resolutions ranging from tens of centimeters to fractions of a micrometer. We have

three recommendations tied to what should be measured and not how to measure it. First, data

is lacking at lateral resolutions ranging from tens of centimeters to millimeters on LST-size
mirrors. This lack should be remedied. Second, the surface irregularity measurements should

be Fourier transformed, to give as amplitude spectrum or power spectrum of the surface irregu-

larities. This is needed to relate the surface measurements to the angles at which light is

scattered. Third, when rms deviation measurements are made for surface irregularities which

are to be compared to measured scatter functions, care should be taken that the spatial frequency

bandpass used in the rms summation correspond to the range of angles over which the scatter

measurements are made.
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9..5 GENERAL CONCLUSIONS

This study has produced no startling new revelations concerning scattering and the require-

ments for a smooth surface on the mirrors in the LST, nor were any such revelations expected.

In general, the study has given a better understanding of scattering at small angles and how

scattering relates to irregularities on the mirror surfaces. The principal purposes of the pro-

gram were to develop analytical models for scattering due to ripple and mtcrostructure, and to
indicate directions for future experimental work, if any is needed. In this, the study has been

successful. Beyond this, several general conclusions can be stated concerning ripple effects and

wide angle scattering.

We have shown ripple to be a significant problem where there is a need to minimize the

diameter containing, say, 95 to 98 percent of the light in the image of a point source. Ripple

which will degrade an image in this respect may not significantly degrade the peak intensity of

the image. Ripple of significant magnitude can be present even when the mirror is polished with

a full aperture, flexible lap of a type we would expect to reduce ripple. These levels of ripple

will not be detected by the usual interferometric tests for figure error. We therefore feel that

more attention should be devoted to developing techniques for measuring ripple quantitatively, and

for controlling ripple in the fabrication process.

Wide angle scattering, as far as it contributes to the effective background radiance through

scattering of light from field stars, appears to be less of a problem than previously thought. If
our model for the scatter function is correct, then scattering of the light from field stars by the

primary mirror should be no problem with a normally finished mirror. This conclusion should

be qualified in three aspects, however. First, the scatter function model upon which this conclu-

sion is based involves an extrapolation of existing data which should be confirmed by experimental

measurements. Second, the effects of surface plasrnon coupling on scattering in the ultraviolet

is still largely unknown, and may have a bearing on whether or not a superpolished surface is

needed. Third, insufficient attention has been given to scattering from surface contaminants, and
some measurements of such scattering should be made with whatever apparatus is used to con-

fi/'m the nature of small angle scattering.
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3. STATEMENT OF WORK

= =

This statement of work is abstracted from the request for proposal, and describes only the

technical work to be performed. Discussion of details of the procedures for reporting results
has been omitted.

= ,

3.1 BACKGROUND

With the near diffraction limited, very narrow angular images that are to be achieved in

the LST, it has become increasingly important to determine what effects scattered light from

optical surfaces will have on the ultimate performance of the LST for various types of astronomi-

cal observations. The purpose of this study is to develop an analytical model of the optical per-

formance of a telescope, such as LST, in the presence of scattered light and to determine a

meaningful measurements program to establish credibility of the analytical model in order to

determine what performance can be expected for the LST and what specifications must be placed

on the LST optics.

3.2 SCOPE OF WORK

The contractor will supply the necessary manpower and resources to accomplish a study

on ultraviolet and visible scattered light effects on the optical performance of the LST. The study

will be divided into two phases. The Phase I effort will be to develop an analytical model to de-

scribe the effects of optical surface scatter on the point spread function (PSF) and the modulation

transfer function (MTF) of the LST OTA optics. The Phase II effort will be aimed at verification

of the analytical model. This effort will consist of two parts. First, a survey will be made to

obtain pertinent experimental data on existing telescope optics in an attempt to establish credibil-

ity with the developed analytical model. The second part will be to determine and recommend an

experimental measurements program that needs to be performed in order to obtain optical surface

scatter data that is needed to completely establish credibility in the analytical model. Details of
the tasks to be covered in Phases I and II are described below.

Phase I--Development of Analytical Model

The contractor will develop an analytical model that will predict both the PSF and MTF for

optical surfaces that produce both wavefrofit errors and scattered light. While limited analytical

models already exist, the purpose of this study will be to carry the analysis much further to in-

clude the following points:

a. The effect of both surface finish (smoothness) and mirror figure must be considered.

The high spatial frequency components Of the surface amplitude function will affect the near angle

(less than 1 arc-second) scatter thus degrading the PSF and MTF. The analytical model should

include the effects of all spatial frequencies in the optical surface. Interferometric mirror figure
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measurements are in effectlow spatial frequency band-pass fiRers and thus in no way record

what type scatter is present due to high spatialfrequencies in the optical surface. One problem

to be addressed in the LST program is how to specify both surface smoothness and wavefront

error. At what point does itcease to make sense to reduce the mirror figure error because the

surface finish dominates the shape of the PSF? Or what PSF or MTF can one expect for a mir-

ror with a given figure error and surface finish?

In addition,the analysis must consider the combined effectand individual contributions of

all optical elements in the LST (OTA).

b. The effects of an overcoating of aluminum plus MgF 2or LiF on the surface finish and

thus optical image performance will be included in the analytical model.

c. The effects of wide angle scattering by fieldstars on producing an artificialbackground

sky brightness will be considered. This should be done using actual star counts for two regions

of the celestial sphere (the galactic poles and the galactic center) and over the entire spectral

regime that LST will be used (900 nm to 1 ram) at a sufficientnumber of wavelengths to describe

the system characteristics.

Phase II--Verification of the Analytical Model

Part 1. A survey will be made to obtain all available data pertinent to this probelm. Em-

phasis in this task will be placed on establishing credibility in the analytical model and predicting

the LST performance with today's state of the art.

Part 2. Based on the analysis and survey of available data, the contractor shall determine

and recommend an experimental measurements program that should be conducted to obtain all the
data necessary to allow NASA to predict with confidence the optical performance of the LST. The

performance of the measurements program will not be a part of this study.
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4. RIPPLE ANALYSIS

"Ripple" refers to optical surface irregularities having characteristic lateral dimensions

in the range between those of figure error and surface microstructure. There are no sharp
boundaries between figure error, ripple, and surface microstructure. In fact, the three cate-

gories of surface irregularities exist largely as conversational conveniences, since they all de-

grade the image through the same diffraction process. The three categories arise from differ-

ences in the test procedures used to measure each, and the fact that the characteristic lateral

dimensions of optical surface irregularities determine the "scatter" angle at which light is dif-

fracted. Of more significance for this study, the mathematical techniques used to analyze diffrac-

tion by surface irregularities depend on their characteristic lateral dimensions.

Figure error is usually measured interferometrically, and is usually specified completely,

including its variation in two dimensions. Typically, the two-dimenslonal wavefront is represented

by a 20- by 20-point square grid in data reduction and in calculating the resultant modulation

transfer function (MTF) and point spread function (PSF). In special cases, a much larger grid

can be used (see Section 4.6). But this can be done only if fast Fourier transform techniques are

used in calculating the MTF and PSF. These techniques reduce the accuracy of the calculations

somewhat, and place restrictions on the sampling intervals used in defining the MTF and PSF.

While these limitations are completely acceptable in defining the MTF, they do not allow adequate

quantitative determination of the effects of higher spatial frequency ripple on the PSF.

For our purposes, we consider figure error to include those surface irregularities with

spatial frequencies up to about 5 cycles per pupil radius, the limitation set by a 20- by 20-point

sample grid. This study considers figure error only in a few specific cases.

Surface mlcrostructure is too fine-scale for deterministic analysis, and must be treated

statistically. It is the source of wide angle scattering, and will be treated in Section 5. For the

present, we note only that the characteristic lateral dimensions of microstructure range from

less than I wavelength to perhaps I millimeter.

The characteristic lateral dimensions associated with ripple, then, range from I millimeter

up to, in the case of the LST, about 30 Centimeters' The number of sample points required to

define ripple adequately in two dimensions, and the number of calculations required to convert
this data into a PSF at the desired level of accuracy, makes two-dimensional ripple analysis un-

attainable. In general, therefore, we will examlne only rotationally symmetric ripple. This
allows the two-dimensional Fourier transform to be reduced to a one-dimensional Hankel trans-

form, making accurate calculations of the PSF possible in a fraction of the time required for com-

parable two-dimenslonal PSF's. These rotatlonally symmetric wavefronts are not identical to

what will be found in real telescopes, but they do allow examination of the magnitude of the image

degradation caused by high spatial frequency ripple.

The analysis of ripple will be deterministic, rather than statistical: that is, specific wave-

fronts will be analyzed rather than statistical models. These may be analytic, defined by equa-
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tions, or random, defined with the aid of a random number generator. All will be rotationally

symmetric except for a special case in Section 4.6.

Section 4.1 gives description of the programs used in the ripple analysis. Sections 4.2

through 4.5 will discuss the rotationally symmetric waveforms analyzed, and will rely heavily

on output plots from the computer program GASPR. Section 4.6 discusses one specific two-

dimensional waveform, the "waffle" wavefront resulting from a square-celled lightweighted mir-

ror substrate. Section 4.7 gives an extensive analysis of the 154-inch diameter primary mirror

built for the Anglo-Australian Telescope. Section 4.8 describes a model for the LST wavefront,

based on the types of surface irregularities encountered in the 154-inch mirror, scaled to the

rms wavefront error values currently expected for the LST. Section 4.9 closes the deterministic

analysis with conclusions drawn from the above, and a discussion of the validity of various models

for the autocorrelation function.

Please note that in the following sections all values pertaining to the heights of surface

irregularities refer to the heights on the wavefront, unless otherwise specified. These are, of

course, twice the height of the corresponding mirror surface irregularities.

Also note that a set of perfect lens PSF curves is included in Appendix C in the form of

overlay transparencies. These may be superimposed on the PSF plots in Section 4 to show

differences between the perfect and modified PSF's under discussion.

4.1 COMPUTER PROGRAMS

Fig. 4-1 is a flow chart representing the basic computational techniques used in a number

of Itek computer programs for calculating MTF's and PSF's. The core of the computation routine

is represented by the four boxes at the bottom of the flow chart, showing the relationships be-

tween the complex pupil function, the complex amplitude image, the point spread function, and the

optical transfer function. It should be noted that this is a very generalized chart, and that the

detailed computation routines used in different programs are quite different, and not necessarily

interchangeable.

The various programs can be divided into two classes, deterministic and statistical. The

one statistical program we use currently is PORO, which uses an MTF degradation function of

the form

T_° --.e-((21rw)2 [1 - _li(Vn)]} (I)

to define the image degradation due to a statisticalwavefront error of w wavelengths rms. Here

un is the normalized spatial frequency, and @ll iS the autocorrelation function model for the wave-

front. Currently, a Gausslan autocorrelation function of the form

4_il(Un) = e-(2NH2Vn 2) (2)

is used, where N H is the reciprocal of the autocorrelation length for the wavefront, This program
was used in connection with the discussion of autocorrelation functions in Section 4.9.

All of the deterministic programs available at Rek start with a specific wavefront deforma-

tion map, convert this into a complex pupil function, and compute the OTF (or MTF) and PSF

from that. The programs differ in the form and source of the wavefront deformation map. FRED
and FITSCAN use interferograms from real wavefronts to compute hhe wavefront deformati0n

maps. FRAP-2D uses third order aberrations and a random number generator to produce a two-

dimensional synthetic wavefront deformation map. GASP generates a rotationally symmetric
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wavefront map using rotationally symmetric third, fifth, and seventh order aberrations. The two-

dimensional programs are used to a limited extent in connection with Sections 4.6, 4.7, and 4.9

of this report. The main computer program used in this study is GASPR, revised version of

GASP, having increased accuracy and a substantially larger number of input and output options.

GASP and GASPR both use Hankel transforms (Fourier-Bessel transforms) to compute the

PSF from the rotationally symmetric complex pupil function. GASP uses 96-point Gaussian

quadrature for the Fourier integration, with the wavefront being defined by 96 points along one

pupil radius. With GASP, the PSF can be computed out to about 46 Airy radii. Beyond that, spuri-

ous oscillations are produced, due to the limited number of sampling points. In GASPR, the num-

ber of sample points was increased to 512, to extend the range over which an accurate PSF can be

calculated. Linear extrapolation from the 96-point case led us to expect the limit on radius to be

about 250 Airy radii, but in fact useful results can be obtained to at least 300 Airy radii. The ulti-

mate limit has not been determined.

GASPR was created for this study program, and a complete description will be provided

separately. A description of its input and output options will be given here, along with some dis-
cussion as to its accuracy, for the benefit of readers who only wish to know enough to interpret

the results presented in the next few sections of the report.

4.1.1 Input Options

The user of GASPR may define the form of the wavefront he wishes to analyze through the

choice of a number of input options. They are as follows:

1. Central obstruction--A circular central obscuration may be included, defined by its

normalized diameter E.

2. Seidel aberrations--3rd, 5th, and 7th order spherical aberration and defocus may be

included. (The nonrotationally symmetric Seidel aberrations are, of course, excluded.) These

aberrations are specified in terms of the optical path difference (OPD) at the edge of the pupil.

3. Analytic OPD functions--Two basic OPD functions have been added, the cosine phase

grating Ci and the Gaussian cross section ridge Gj:

Ci = a icos(2_bip + _bi) (3)

w

I

I

m

l

U

g

u

L

g

and

Gj = hj exp [-(p - Poj)_/wj 2] (4)

w

where a i = phase amplitude (OPD amplitude) in wavelengths

b i = spatial frequency in cycles per pupil radius

$i = phase angle in radians

p = normalized pupil radius

Poj = normalized pupil radius at which Gj reaches maximum

hj = phase height (OPD height) of ridge in wavelengths, and

wj = half-width at which Gj = hj/e.

w

m

B

G can also be used to generate edge roll-off by setting Po to a value greater than 1.0, and select-

ing w and h appropriately.

More complex analytic OPD functions can be generated by using combinations of Ci and Gj.

The possible combinations available are defined by Eq. 5:
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OPD(p) = __ + Gj) (5)

_=1 i=1

j=l

The maximum value for m,n, and 0 is 10, and for p is 8.

4. "Random" wavefront--Values of OPD along a radius are defined with the aid of a random

number generator and one of four smoothing functions. The user defines the wavefront in terms

of its rms wavefront error co, the correlation width c, the type of smoothing function (Gaussian,

square, triangular, or linear exponential), and the seed. The seed is a number determining where

in the random number table the generation process begins. It permits the same wavefront to be

regenerated exactly. The smoothing functions are of the form

Gausslan Sc(r) = exp [-r2/(c/2)2] (6)

1, r _< c/2)
Square Sc(r) = 0, r > c/2 (7)

TriangularSc(r) = (0- Irl/c' r -c ), r (8)

Linear exponential Sc(r) = exp [-lrl/(c/2)] (9)

The random numbers are generated at equally spaced increments of 0.006 in normalized

radius units, and smoothed with the above functions. A parabolic interpolation routine is then used

to define the OPD at the 512 unevenly spaced points used in the Gaussian quadrature integration

technique.

5. Measured wavefront profile--Any set of measured data (or an arbitrarily chosen set of

numbers) can be entered at equally spaced radius increments. A parabolic interpolation routine

will be used to determine the values of this wavefront at the 512 sample points, as described

above.

6. Apodization--One apodization function is available. This defines a pupil transmittance

function A, in which the effective transmittance falls off as a Gaussian function of the pupil radius

p:

A(p) = exp (-kp z) (10)

where p(1/e) = k -in

7. Any combination of input options i through 6 may be used, except that a random wavefront

cannot be used at the same time as a measured wavefront.

4.1.2 Output Options

GASPR computes the PSF from the specified wavefront, using a Hankel transform. In turn,

a Hankel transform of this PSF is used to generate the MTF. A series of other outputs, both
printed and plotted, is available:

1. OPD---The input waveform may be plotted, showing OPD as a function of the normalized

pupil radius. No printout of this function is available. (The rms wavefront error co is always

printed out.)
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2. PSFmTwo forms of the point spread function are available. In one, logi0 of the relative

intensity is plotted as a function of the image radius, specified in Airy radii units (one Airy

radius = 1.22 k/Dp, where Dp is the entrance pupil diameter). In the other, the effective object
radiance in magnitudes per square arc-second is plotted as a function of radius in arc-seconds.

These two outputs are available both as plots and as printouts.

The normalization technique used for the PSF should be understood. Two steps are involved,
in the case of the logl0 relative intensity output. First, the PSF is normalized so that the total

energy in the PSF equals unity, including that part of the PSF beyond the radius at which the output
is truncated. This is equivalent to normalizing the MTF to 1.0 at zero spatial frequency, and is
done to distinguish between changes in effective transmittance and changes in the image spread

when a central obstruction or apodization is present. Second, the PSF is multiplied by a constant
which will make the PSF equal to unity at radius zero when there is no central obstruction and
no wavefront error. Thus the actual value of the relative intensity at radius zero is equal to the
Strehl definition _. For a perfect lens with a central obstruction, • = (1 - _z).

For the effective radiance plot, the relative intensity I* (r) is converted to effective radiance
_¢{v(r) magnitudes per square arc-second using the equation

_v(r) = 26.84 + m v - 5 logl0 Dp + 5 logi0 _- 2.5 logl0I* (r) (11)

where mv

Dp
= magnitude of star
= aperture diameter in meters
= wavelength in meters.

m v is normally specified in visual magnitudes, although other types of magnitudes can be used

(see Section 5.5.1 for derivation). Note only that_v(r) will be in whatever type of units are usbd

for my. The user must specify mv, Dp, and k. The top of the effective radiance scale will be set
to the nearest integer smaller than the value of J{v(r) defined by the first five terms of Eq. 11.

I* (r) incorporates the normalization to the Strehl definition. Thus_Clv(0) should represent the true
peak effective radiance of the stellar image.

The effective radiance plot option is included to allow direct comparison of performance

at different wavelengths. It should be noted that the computation does not take into consideration
variations in spectral type for the star. Thus, for a comparison with a real star, the user must
adjust the value of my at each wavelength appropriately.

3. Encircled energy (EE)--The encircled energy is printed out and plotted every time the
PSF is printed out and plotted. It is calculated by integrating the PSF function after it has been

normalized to unit energy. The encircled energy plot appears on the same graphs as the log10
relative intensity and effective radiance functions, and can neither be deleted nor plotted separate-
ly. The integration technique used is Simpson's rule. The accuracy of the results will be dis-
cussed in Section 4.1.3.

4. EE(perf) - EElThis output is available in printout only. This function will be referred

to as the displaced energy, DE(r). A positive value indicates that a fraction DE(r) of the total
energy in the PSF has been displaced outward beyond radius r. A negative value indicates an

inward displacement (as, for example, with an apodized lens). Since the comparison is made to
EE(perf), the encircled energy for a perfect lens with no central obstruction, the energy displace-
ment caused by a central obstruction can also be evaluated.

DE(r) can be used to calculate both where the displaced energy comes from and where it

goes to the function. ADE = DE(r1) - DE(r2) , r 1 < r2 indicates the difference in energy content in
the PSF between r i and r z for the test case as compared to the perfect, unobstructed lens. A nega-

M

1

= _

1

1

i

W

z
1

1

4-6 m



--,=

L

= •

i

tive value indicates a net loss in energy, and a positive value indicates a net gain, compared to the

perfect case. Although this function is not printed out or plotted, hand calculations will be used

in some of the analysis in subsequent sections.

5. MTFmThe modulation transfer function T(v n) is plotted as a function of the normalized

spatial frequency v n = v/v o, where v 0 = Dp/>, cycles per radian, or v0 = 1/>,F cycles per unit

length, F being the focal ratio. Both plotted and printed outputs are available.

The MTF is calculated by taking a Hankel transform of the PSF function generated above.

Since the PSF is truncated, it does not represent all the energy in the PSF. To minimize the

errors in the MTF due to this truncation, the value of T(0) has been set equal to the encircled

energy at the truncation radius. The magnitude of the residual error is discussed in Section 4.1.3.

6. MTF degradation function Tw--The MTF degradation function is calculated by the equa-

tion

To_(Vn ) = T(vn)/Ti(vn) ' (12)

where Tl(Vn) is the perfect lens MTF given by

2 [arc cos sin (arc cos Vn) ]TI(Vn) =_ Vn- vn
(13)

When a central obstruction is present, the analytic equation for the MTF of an obscured perfect

lens is substituted for T I. Both printed and plotted outputs are available. This function will

always be plotted and printed out when the MTF is calculated and printed out. (The plot can be

suppressed.)

7. *Autocorrelation function ¢ll(Vn)mThe *Autocorrelation function is computed by invert-

ing Eq. 1. Thus

mu(Vn) = 1 + [lnTco(Vn)/(21r00) _] (14)

This function is automatically calculated whenever MTF is calculated. Both printout and plot are

provided, but the plot may be suppressed.

Strictly speaking, this function is not the true autocorrelation function for the wavefront.

Eq. 1 was derived for small random wavefront errors having Gaussian height distributions (but

not necessarily a Gaussian autocorrelation function). It does not apply rigorously to any deter-

ministic wavefronts which do not exhibit Gausslan characteristics. Also, for large wavefront

errors, both the MTF and Tw can have negative values, indicating spurious resolution; under these

conditions, Eq. 1 is totally inapplicable. Results obtained in this study, however, indicate that

Eq. 1 may have some application to other than Gaussian random wavefronts, when the wavefront

error is small, although ¢ll(Vn) may have a form which cannot be defined analytically with any

great ease. This property allows examination of the properties of the autocorrelation near zero

Vn, even though mathematical rigor is not maintained. To distinguish it from the true autocorre-
lation function in later discussions, this function is termed the * Autocorrelation function.

8. Zed integral--The zed function is computed by the integral

1Zed = @ll(vn)Ti(vn) vnd vn (15)
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It is contended by some that this function should always equal zero, if the mean value of the wave-

front error is zero and &ll(Vn) is the true autocorretation function. (See Section 4.9 for further

discussion.) If true, a very small value for zed may be taken as an indication of the validity of

using the * Autocorrelafion function.

Figs. 4-2 and 4-3 show examples of the output plots. Fig. 4-2 shows the array of five plots

which would normally be used for optical analysis. Fig. 4-3 shows the effective radiance function

for the same wavefront. All plots are for a 12-cycle-per-radius cosine waveform of phase ampli-

tude 0.08 wavelength. For the effective radiance plot, m v = 0, Dp = 3.0 meters, and k = 325
nanometers.

4.1.3 Accuracy of Computer Programs

The accuracy of the results calculated with GASPR can be evaluated by computing the PSF,

MTF, and encircled energy for a perfect lens with no obstruction and no wavefront error. The

correct answers for these examples can be defined by well-known analytic equations. In fact,

since these functions are builtinto EE(perf) - EE and Toj, the encircled energy and MTF accuracy

may be evaluated internally.

Itek has a separate computer program, SPRE, which computes the PSF using an analytic

equation. (It is used to evaluate the effects of central obstructions and annular ring obstructions

on the PSF.) A comparison of results between SPRE and GASPR shows the latter to be accurate

to within 1 in the sixth significant figure, which is essentially round-off error.

Encircled energy is computed from the calculated values for the PSF using a Simpson's rule

integration. Simpson's rule requires an odd number of points: e.g., the values of the PSF at

r A = 0, 0.1, 0.2, 0.3, and 0.4 are used to calculate EE at radius 0.4. To calculate EE at radius
0.3, in this example, it is necessary to extrapolate between the values calculated by Simpson's"

rule at r A = 0.2 and 0.4, using a modified integration technique. Thus, the greatest accuracy is

attained at the Simpson's rule points. The oscillation in accuracy between odd and even points is

most noticeable within the central maximum, where the encircled energy is changing most rapidly.

At the Simpson's rule points, the accuracy depends on the increment between sample points. Out-

side the central maximum, the accuracy at Simpson's rule points remains constant at the values

indicated in Table 4-1. The accuracy at non-Simpson's rule points approaches this level well
outside the central core.

Table 4-1 -- Accuracy of the Encircled Energy Function at

Simpson's Rule Radii for Different PSF Sampling Increments

Radius Increment Error in Perfect Lens EE

0.20 -0.0017

0.10 -0.000093

0.05 -0.0000057

In computing the MTF, there are two forms of error. One is an error at low spatial fre-

quencies due to truncation of the PSF. The other is an error at high spatial frequencies due to

PSF sampling point increments. The magnitude of these errors is shown in Figs. 4-4 and 4-5,

which plot the MTF degradation function To_ versus normalized spatialfrequency vn for test case

perfect lenses. In Fig. 4-4, both scales have been greatly expanded to show the magnitude of the

error. This graphically illustrateswhy T(0) should be set equal to the encircled energy at the

truncation radius. Much larger errors are present at high spatial frequencies, due to the finite

sampling increments, as shown in Fig. 4-5.
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The errors in the MTF affect the accuracy of both Tw and 4, n fairly strongly, particularly

when the rms wavefront error is small. This may be seen by comparing the MTF degradation and

*Autocorrelation curves in Fig. 4-2 to Fig. 4-5. The sampling increment used was 0.10, and the

high frequency behavior of both Tw and 4' n shows a strong correlation to Fig. 4-5. (It should be

noted that in the case of a rotationally symmetric wavefront error, both of these functions will

have a value of 1.0 at _, so the rise in value is not due solely to the sampling increment error.)

The positive value of these errors in the MTF will have a particularly strong effect on 4_11

when ¢o is very small. As a result, the zed integral will be positive for small wavefront errors.

For large wavefront errors, zed is driven negative. (More about this in Section 4.9.)

In general, most curves shown in this report use a radius increment of 0.1 Airy radii and

truncate the PSF at 100 Airy radii. Truncation at 50 Airy radii is used in a limited number of

cases. Their accuracy may be judged accordingly.

These accuracy estimates are made for the perfect lens case. There is no way of rigorously

determining the accuracy of the program when wavefront error is present, since no calculation

routine of higher known accuracy is available at present.

4.2 ROTATIONALLY SYMMETRIC COSINE PHASE GRATINGS

Cosine phase gratings are rotatlonally symmetric wavefront errors of the form of Eq. 3,

which we rewrite here:

OPD = a cos (2 bp + _b) (3)

Fourier analysis states that any waveform can be expressed in terms of a spectrum of sinusoidal

functions of appropriate amplitude, frequency, and phase angle. In this sense, consideration of the

behavior of cosine phase gratings containing only a few harmonics gives some understanding of

the behavior to be expected of high spatial frequency ripple.

The analysis given here was performed entirely with the GASPR computer program. We

have not done extensive theoretical analysis to try and derive analytic equations for some of the

simpler cases. Comparison of our results to earlier work done by RatcUffe l* and Barakat 2 leads

to some interesting suppositions, however, and allows us to state some equations empirically which

agree well with our computer derived results.

Ratcliffe's treatise s gives a very clear exposition of the properties of a linear sinusotdal

phase grating in diffracting a plane wavefront, both being of infinte extent. RatcUffe defines the

phase grating by its phase amplitude in radians, A _ = 2_-a, where a is the phase amplitude in

wavelengths, and by its period d, in units of length. When A 4_<< 1.0, the only significant amounts

of diffracted energy appear in its first order sidebands, defined by the diffraction angle sin _ =

+_,/d. (The wavefront is assumed to be normally incident on the phase grating.) The complex

amplitude of each sideband is IA 4_/2 = iTra, and its intensity is =2a2. The net reduction in intensity
of the undiffracted wavefront is 1 - 2=2a 2.

In the more general case where _ > 1.0, a series of sidebands is generated, with the dif-

fraction angles defined by the standard grating equation for normal incidence,

Sin a n = ank/d (16)

The complex amplitude A n of each sideband of order n is given by

* References are listed in Section 8.
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A n = (i)nJn(A_b)= (i)nJn(2_ra), (17)

Jn being thenth order Bessel functionof the firstkind,and n = 0 corresponding to the undeviated
wavefront.

Barakat2consideredthe case of a singlerotationallysymmetric cosinephase gratingand

computed the resultingIvlTF.Although he did not discussthe PSF extensively,he did derivean

equationfor the Strehldefinition.Inour terminology,

--[J0(2r_)l2 (18)

Note thatthisis equalto A_. This leadsone to suppose thatthe restofEq. 17 might have some

applicationtothe rotationallysymmetric case.

The rotationaUy symmetric cosine phase grating diffracts light into a series of sidebands
which can be defined by Eq. 16. The diffracted light is not traveling as two plane waves, however.
Rather it is traveling in directions defined by the shells of cones whose apex half-angles are de-

fined by _n- If we assume that each order contains the same energy as is diffracted into the cor-

responding order for a linear phase grating, then the fractional displaced energy ADE n is given by

ADEn = 2[Jn(27ra)]_ (19)

To compute the relativeintensity,one would presumably divideby the circumference of the cone

of order n, 2_rn, withthe radiusrn expressed in some appropriateunits.An empirical solution

to thiswillbe given below.

Further examinationof thepropertiesof rotationallysymmetric cosinephase gratingswill

be done in terms ofspecificexamples, keyed to GASPR outputs. These willcover singlespatial

frequencies,combinationsof two spatialfrequencies,and muRiple spatialfrequencies.

4.2.1 Single Spatial Frec/uency

In Eq. 3 there are three variables, spatial frequency b, phase amplitude a, and the phase
angle _. In addition, the pupil may have a central obstruction of differing diameter ratio e. We
will consider the effects of varying all four quantities. First, however, it is useful to rewrite

Eq. 16 in terms of b. b is given in cycles per radius. Thus d = Dp/2b, and

Sin c_n = _-2nb)_/Dp (20)

The radiusofthe sideband can thenbe writteninterms ofAiry radii1.22X/Dp or interms of the

unitk/Dp, which is sometimes termed a Rayl:

rAn = 1.64nb(Airy units) (21)

rRn --2.0nb (Rayls) (22)

4.2.1.1Variationof SpatialFrequency

Fig. 4-6 shows the PSF plotsfor three cosinephase gratingsof differentspatialfrequencies.

a = 0.02wavelength and _ = 0 inallthree cases, b = 12, 27,and 39 cyclesper radius,respective-

ly,from top tobottom inthe figure. The firstorder sidebandis clearlydefined,and the second

order sideband can be seen weakly. A close comparison witha perfectlens PSF would show a

slightincrease in the relativeintensityin the regionbetween the two harmonics, and a reduction

in relativeintensityoutsidethatregion.
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The peak intensity of the first order sideband can be approximated fairly well by the equa-

tion

I* (b) = _ra2/2b = rra2/1.22rAm = rca2/rRm (23)

where the asterisk indicates that this is the relative intensity, normalized to the value at r = 0

for a perfect lens. Table 4-2 compares results.

Table 4-2 -- Relative Intensities for Cosine Phase Gratings of the Same Phase

Amplitude and Different Spatial Frequencies

b I* (computer) I* (Eq. 23)

12 5.35 × 10 -S 5.24 × 10 -5

27 2.34 x 10 -s 2.33 x 10 -5

39 1.63 x 10 -5 1.81 × 10 -5

Expanding the Bessel function of Eq. 19 for n = 1 and comparing the results to Eq. 23 shows

the latter to be similar to the first term in the expansion. One can speculate that a more general

form of Eq. 23 can be written:

I_(b) = [Jn(2r'a)]2/2rnb, n = 1, 2, 3, . . . (24)

In effect, Eq. 24 states that the relative intensity in the nth order sideband equals the total energy

in that sideband (Eq. 19) divided by the sideband "circumference" measured in Rayls. The validity

of this equation will be tested in the next section.

Examination of the displaced energy function EE(perf) - EE indicates that energy is dis-

placed outward from the center of the PSF and inward from beyond the second order sideband.
Table 4-3 lists data for the first two cases. (The second harmonic for b = 39 is outside 100 Airy

radii .)

Table 4-3 -- Displaced Energy for Single Cosine Phase Gratings

for Spatial Frequencies of 12 and 27 Cycles Per Radius

b 12 27

Radius for maximum 13.4 28.2

outward displacement, r t

DE(r1) 0.007641 0.007719

Radius for maximum 39.6 88.8

inward displacement, r_

DE(r_) -0.000140 -0.000118

Total DE 0.007781 0.00783 7

Strehl definition, _ 0.992128 0.992128

1- • 0.00'/872 0.007872

Thus, Strehl definition is an excellent definition of total displaced energy in this case for small

wavefront error.
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4.2.1.2 Variation of Phase Amplitude

Fig. 4-7 shows three PSF's for cosine phase gratings of different phase amplitudes.

Coupled with Figs. 4-2 and 4-6a, they complete a series of five cases in which the phase ampli-

tude a = 0.02, 0.04, 0.08, 0.16, and 0.38274 wavelengths. The last value was selected because it

reduces the Strehl definitionto zero, in accordance with Eq. 18. All five examples have the same

spatial frequency, b = 12 cycles per radius, and phase angle, _b = 0.

Fig. 4-7c, for which a = 0.38274, presents a good test for the validity of Eq. 19, for ADEn,

and 24, for I*. Table 4-4 summarizes the calculations. The values for I_ agree quite well.

Table 4-4 -- Relative Intensity and Energy Distribution for

PSF of Cosine Phase Gratings (a = 0.38274, b = 12)

n I_ (computer) I_ (Eq. 24) ADEn (Eq. 19)

1 3.60 × 10 "s 3.56 x 10 -3 53.7%

2 1.25 × 10 -3 1.24 x 10 -3 37.3%

3 1.75 x 10 -4 1.75 x 10 -4 7.9%

4 1.36 × 10 -s 1.39 x 10 "s 0.84%

5 8.07 x 10 -7 7.13 x 10 -7 0.054%

A comparison of the values for ADEn to the encircled energy curve in Fig. 4-7c also shows good

agreement.
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4.2.1.3 Variation of Phase Angle

Changing the phase angle _ varies the internal structure of the sideband and aRers its

maximum relative Intensity. No change is made tn the general distribution of energy, however
Fig. 4-8 shows the changes in internal structure of the first sideband for _b= 0, 7r/4, 7r/2, and

3rr/4. Values of _bdiffering by rr produce identical PSF's. Numerical data is presented in Table
4-5. This data, and other data not presented, indicates that the exact position of the maxima

within the sideband can be calculated by the equation

rAn = 1.64nb + constant (25)

where the values of the constant associated with each phase angle are given in the Table 4-5.

Table 4-5 -- Variation of Sideband Internal Structure With Phase Angle _b
(a = 0.02, b = 20 cycles per radius)

_b r A I_ (r A) Con stant

0 33.1 3.19 x 10 -s +0.3

_/4 32.2 2.46 x 10 -5 -0.6
33.4 2.44 x 10 -5 +0.6

_/2 32.5 3.38 x 10 -5 -0.3
31r/4 32.8 3.55 x 10 -5 0
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Fig. 4-8 -- Effects of varying phase angle
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4.2.1.4 Variatlon of Central Obstruction Diameter Ratio

Figs. 4-9, 4-I0, and 4-11 combine to illustrate the effects a central obstruction _-ill have
on a lens with wavefront error Ln the form of a cosine phase grating. Figs. 4-9 and 4-I0 show

how the PSF is affected by the phase grating alone and the central obstruction alone. The phase

grating has the constants b = 20 cycles per radius and a = 0.0707 wavelength. The latter was

selected to give an rms wavefront error w = 0.050 wavelength (w = a x 2 -tI2 for a cosine phase

grating). The central obstruction diameter ratios _ = 0.40, 0.60, and 0.80 were selected to show

the effects of varying the diameter ratio, rather than to be representative of the LST.

It is immediately evident that increasing the central obstruction diameter ratio spreads out

the energy in the first order sideband for the cosine phase grating. Several more subtle effects

become evident when the displaced energy data is examined closely: (1) A cosine phase grating

will displace an amount of energy which is approximately equal to 1 -_, the Strehl definition. A

central obstruction will displace more energy than its Strehl definition would indicate. (2) A com-

bination of a cosine phase grating and a central obstruction will displace less energy from the

central core of the image than the sum of the energy displacements for the two taken separately.

(3) Conversely, at radii larger than that of the first order sideband, the combination will displace

more energy than the sum of the two considered separately. The third effect may be an indication

that a central obstruction affects scattered light more adversely than linear addition of effects

might imply. However, the effect is quite subtle.

Fig. 4-12 shows the MTF's for a cosine phase grating with and without a central obstruction

• = 0.60, and Fig. 4-13 shows the corresponding *Autocorrelation functions. The upper curves in

Fig. 4-12 represent the zero wavefront error case. The lower curves appear to have been multi-

plied by a degradation function which consists of a base spatial frequency independent constant

overlayed with a spatial frequency dependent oscillation, and the * Autocorrelation functions bear

this out. The fact that the *Autocorrelation functions oscillate about zero indicates that the con-

stant term is exp [- (27rw)2]. The central obstruction damps out the overlaying oscillation at mid-

dle spatial frequencies, the size of the damped region being a direct function of the central ob-
struction diameter ratio. The * Autoc0rr_lation plots also indicate the degree to which truncation

error affects the value of this function at _ = 0, where eft = 1.0, by definition. (The PSF was

truncated at 50 Airy radii for this computer run.)

Two conclusions can be drawn: (1) The central obstruction and the wavefront error do

interact in degrading the MTF, but in a subtle manner. On a gross scale, the MTF degradation

functions for each may be treated independently. (2) The MTF degradation function of Eq. 1 is

valid for use with cosine phase gratings, although 4ht becomes a rather complicated function.
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4.2.2 Two Spatial Frequencies

Combining two cosine phase gratings in one OPD function gives some indication of the degree

to which there is any interaction between sidebands produced by each. There are two significantly

different cases: first, where one of the cosine phase gratings has a very low spatial frequency,

and second, where both have high but well separated spatial frequencies. In this presentation,

only one set of examples will be given for each, representing the principal conclusions to be

drawn. Closely spaced high spatial frequency phase gratings will be dealt with in the section on

multiple spatial frequencies.
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4.2.2.1 Effect of Adding Very Low Spatial Frequency Component

The high spatial frequency component has the constants b = 12 cycles per radius and a = 0.04

wavelength. The PSF for this function alone is shown in Fig. 4-7a on a 100 Airy radii scale. The

low frequency component has a spatial frequency of 1.5 cycles per radius, and can be considered

to represent figure error. Its phase amplitude is set to 0.04 and 0.16 wavelengths, in the two

examples shown. The OPD waveforms for both examples are shown in Fig. 4-14, and the resulting

PSF's are shown in Fig. 4-15.

It is clear that the low spatial frequency component is significantly modifying the internal

configuration of the sidebands due to the higher spatial frequency component. However, the amount

of energy in the first order sideband has not been changed significantly, only spread out somewhat.

Between 13 and 28 Airy radii, _DE = 0.03025, 0.03033, and 0.03059 for a = 0, 0.04, and 0.16,

respectively, for the lower spatial frequency.
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Fig. 4-15 P PSF's for combination high and low spatial frequency waveforms
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4.2.2.2 Interaction of High Spatial Frequency Components

Combinations of higher spatial frequency cosine phase gratings do not interact in the same

way as the combination of a very low spatial frequency grating and a higher spatial frequency

grating. This is illustrated in Figs. 4-16 and 4-17. The two cosine gratings are of spatial fre-

quencies 18 and 25 cycles per radius. Both are maintained at the same phase amplitude which

is scaled to 0.02, 0.08, and 0.16 wavelength. The phase angles are set to 0 and 7r radians to

eliminate peaking at 1.0 normalized radii. Fig. 4-16 shows the composite OPD waveform for the

0.02 phase amplitude case. Fig. 4-17 shows the PSF plots for the three cases cited above.

At low phase amplitudes, there is very little interaction between the first order sidebands.

As the amplitude is increased, however, a number of other sidebands show up in the PSF. Some

of these are higher order terms of the two fundamental spatial frequencies. Thus, in accordance

with Eq. 25, sidebands for b t = 18 show up at rA11 = 29.8, rA12 = 59.3, and rA13 = 88.9, and side-

bands for b 2 = 25 show up at rA21 = 41.3 and rA22 = 82.3 Airy radii. More interestingly, sidebands

show up at beat frequencies: the two brightest sidebands for a = 0.16 wavelength, with the excep-
tion of the first order sidebands, are at 11.8 and 70.8 Airy radii and correspond to b2-b 1 and

bz+b 1. These divert significant amounts of energy from the first-order sidebands, and conse-

quently reduce their relative intensity, as predicted by Eq. 24. Note, however, that the internal

structure of the individual sidebands is not altered significantly, as by a central obstruction or by
figure error.
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4.2.3 Multiple Spatial Frequencies in Combination

The final cosine phase grating combination we examine is a combination of four spatial

frequencies in which the difference in frequency between component phase gratings is varied. All

components have the same phase amplitude, a = 0.04 wavelength, and the phase angle _ is alter-
nated in order of increasing spatial frequency, 0, 7r, 0, Ir radians. The spatial frequency combina-

tions are: 24, 30, 36, 42 cycles per radius; 24, 26, 28, 30 cycles per radius; and 24, 24.5, 25,
25.5 cycles per radius. The OPD waveforms are shown in Fig. 4-18, the corresponding PSF's
are in Fig. 4-19, and MTF's are in Fig. 4-20.

As the spacing between components is reduced, the character of the OPD waveforms

changes, as do their effects on the PSF and MTF. Down to 2 cycles separation, the four compo-
nents behave independently, except for the formation of sum and difference sidebands of the type
discussed in the last section. (This latter reduces the first-order sideband intensities somewhat.)

The totat rms wavefront error obeys the formulation

_-( 12+ 2+ ...+ 2) (26)

giving co = 0.0566 wavelength rms for the first two examples. For the third example, however,
co = 0.0722, and the OPD waveform is more nearly characteristic of a single spatial frequency
which has been modulated by a low spatial frequency component. The effects are noted in the PSF

by a change in the internal structure of the sideband and a disappearance of the sum and difference
sidebands. The encircled energy function drops considerably below the first sideband, and the

MTF drops measurably. Note in particular the MTF reduction at high spatial frequencies, a sign

of the presence of very low spatial frequency components.

Finally, it should be noted that the interaction of phase gratings spaced as closely as in the

third example is strongly dependent on the value of the phase angle _. Had a phase angle of zero
been used for all four components, the OPD waveform would have been reversed, with the large

phase amplitude excursions occurring in the section near the center of the pupil. This would have
significantly reduced the net rms wavefront error, and would have affected the PSF and MTF very

differently.
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4.2.4 Cosine Phase Gratings for Scatter Function Models

It seems logical to use Fourier decomposition of the wavefront error into a continuous or

discrete spectrum of cosine phase gratings as a basis for modeling the scatter function. The pre-

ceding sections give graphic demonstrations of the difficulties involved. The interactions of
different spectral components when closely spaced, or when in the presence of figure error or a
central obstruction, make such analysis difficult except through programs such as GASPR.

Nevertheless, some useful inferences can be drawn from a qualitative model which pictures the
source of scattering as a series of very low phase amplitude cosine phase gratings well separated

in spatial frequency. In building such a model, it is necessary to distinguish between linear phase
gratings and rotationally symmetric phase gratings, since each affects the image in a different
manner.

Eq. 23 gives the relative intensity of the first-order sideband of a rotationally symmetric
cosine phase grating of small phase amplitude. The corresponding equation for a linear cosine

phase grating is

I* = _2a2 (27)

where a is the phase amplitude in wavelengths, as before. In a lens with a rotattonally symmetric

grating, the diffracted light will form a ring of light centered on the Airy disk of a star image.
With a linear grating, the diffracted light will appear as two ghost images of the star. Note that

with a linear grating, the relative intensity is independent of the spatial frequency of the grating,
while for a rotaflonally symmetric grating, it is inversely proportional to the grating frequency.

That is,

I_ (b i) cc as (linear grating)
(28)

and

I_ (b i) cc a2/b (rotationally symmetric grating) (29)

It seems reasonable to presume that these proportionalities will remain valid, even if Eqs. 23 and

27 are not quantitatively correct.

As will be shown in discussing wide angle scattering in Section 5, scatter functions tend to

be inverse power functions of the scatter angle. That is, plotting the logarithm of the scatter
function against log sin ot produces curves which are roughly straight over extended lengths with

a negative slope -s, where s usually lies in the range 1.5 to 3.0. (It is usually assumed that s

drops to 0 at very small angles.) Thus, typical scatter intensities I_ (_) are proportional to
(sin q)-s, and from Eq. 20,

I_ (_) cc (sin oO-s oc b -s (30)

If Eq. 30 is to hold for our phase grating model, clearly the phase amplitude of each spectral
component must be proportional to its spatial frequency. Thus, from Eqs. 28 and 29,

a(b) ccb -s/2 (linear grating) (31)

and

a(b) ccb Ct-s_/2 (rotatlonally symmetric grating) (32)
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Eqs. 31 and 32 lead to different conclusions as to the distribution of phase amplitude as a

function of spatial frequency required to produce a given slope in the scatter function, and one

must therefore question which, if either, best represents scattering from real surfaces. Surface

irregularity microstructure is usually considered to be completely random, and therefore best fit

by a spectrum of linear phase grating of varying orientation. Some rotational symmetry will be

found in the ripple on large aspheric mirrors, however, due to zonal figuring and polishing during

fabrication. Thus both types of phase grat_g:will be needed in any model purporting to be com-

plete.

The cosine phase grating models have important implications concerning scaling of the

scatter function with wavelength. Both Eqs. 31 and 32 imply that for a constant slope s, the ampli-

tude a(b) must vary monotonically with the spatial frequency b. The amplitude a has been given

in units of wavelengths. To scale to different wavelengths, we should write a(b) = w(b)/k, where

w(b) and k are expressed in units of length. Thus the relative intensity for a single grating of

spatial frequency b for either linear or rotatio_ally symmetric cosine gratings will scale as the

inverse square of the wavelength. Note from Eq. 20, however, that the scatter angle has also

shifted with wavelength. Thus, if we wish to determine how the relative intensity at a specific

scatter angle scales with wavelength, we must compare the appropriate spatial frequency compo-

nents in the wavefront irregularity function w(b), and take the change in magnitude of w(b) into

consideration. If this is done for both linear and rotationally symmetric phase gratings, using

Eqs. 20, 30, 31, and 32, it will be found that in both cases,

I (a, x) (sin a)-s/x 2-s (33)

Now I* is a normalized intensity, I* = I/I0, where I 0 is the intensity at the center of the

diffraction pattern for a perfect, unaberrated lens. We know that

(34)

Thus

I(ot, )_1) = I0()_l) × I*(c_, X1)
(35)

Note that when s = 0, Eq. 35 implies that the intensity scales by the inverse fourth power of

the wavelength. To understand this physically, recall that intensity is measured in terms of power

per unit solid angle: thus, when the wavelength is reduced by a factor of 2, for example, the
amount of energy diffracted by a given spatial frequency grating is quadrupled, and the solid angle

into which it is diffracted is divided by 4. This applies strictly only in the region where Eqs. 23

and 27 are valid, i.e., where one can safely assume that all diffracted energy appears in the first-

order sidebands of the phase gratings.

Eq. 35 has implications which should be checked experimentally. We normally assume that
scatter functions scale as the inverse square of the wavelength, and this is true as far as total

scattered light is concerned. But scatter at a given angle will scale as the inverse square of the

wavelength only if the scatter coefficient is itself an inverse square function of the scatter angle,

according to Eq. 35. Since measurements of the scatter function have found s to vary between

1.5 and 3.0, wavelength scaling should vary accordingly (see Section 5).
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4.3 ZONAL RIDGES

A zonal ridge is a high or low region of the mirror which extends around the total circum-

ference at the same radius from the center. The most commonly encountered type of zonal ridge

is edge roll-off, but such ridges can occur at any radius. They are commonly seen in the early

stages of fabricating large asphertc mirrors where polishing is done with subaperture sized laps.

In examining zonal ridges, we will use the Gausstan profile OPD function described in

Section 4.1.1. This profile is only a mathematical convenience, however, and many other profiles

are possible.
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4.3.1 Gaussian Cross Section Ridge

Figs. 4-21 and 4-22 represent two C,aussi_anprofile ridges centered at a normalized pupil

height of 0.7, differing only in width. Wide ridges behave like zonal spherical aberration, having

their principal effects within the firstfew Airy radii out from the central maximum. Narrow

ridges have relatively littleeffecton the innermost portions of the ring structure, but tend to

introduce oscillationsinto extended regions of the outer ring structure. In general, the latter

involve very littlenet transfer of energy_ V_ide ridges affectthe middle and outer portions of the

MTF more than narrow ridges, although neither of the cases shown here affect the MTF drasti-

cally. The heights shown here, _/I0, are somewhat larger than is likelyto be found in the highest

quality mirrors, although the 154-inch mirror discussed in Section 4.7 has one or two ridges

extending over partial zones which begin to approach this height. Zones of this order of magnitude

are not too serious unless there are enough of them to act like a phase grating.
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4.3.2 Edge Roll-Off

Edge roll-off is a very common fabrication error on all types of optical elements and can

be quite large. With primary mirrors for Cassegrain type telescopes, edge roll-off may occur
at both outer and inner edges. Fig. 4-23 shows the OPD waveforms for two hypothetical cases of

primary mirrors for a telescope having a central obstruction diameter ratio of 0.32, one with
roll-off on the outer edge only, and the other with roll-off on both edges. The corresponding
PSF's are shown in Fig. 4-24 with the PSF of an unaberrated lens having the same central obstruc-

tion for comparison. (Fig. 4-25 shows the two MTF's.)

Both OPD waveforms displace energy from the central maximum. The energy is spread

relatively uniformly through the first 20 to 25 Airy radii outward from the center of the pattern,

judging from the PSF and encircled energy curves, with no local concentrations.

The manner in which the MTF is degraded emphasizes that the energy is displaces well
outward from the central core. The MTF degradation function (not shown) is clearly quite smooth,

although there is more high spatial frequency suppression than one would get from, say, a very
high spatial frequency cosine phase grating of similar rms wavefront error. Note that the inner

edge roll-off has no effect on the high spatial frequency MTF beyond the second inflection point
due to the central obstruction.
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Fig. 4-23 -- OPD waveforms for edge roll-off
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4.4 ROTATIONALLY SYMMETRIC "RANDOM" WAVEFRONTS

"Random" is put in quotation marks in the title to emphasize that the OPD varies randomly

along the pupil radius, and has a fixed value around the circumference of the pupil at any given

radius. The image degrading properties of this wavefront may therefore be somewhat different

from a fully random wavefront. The rotationally symmetric model is useful in studying the

effects of varying the parameters of a random Wavefront, however, which is the present intent.

Two parameters of the random wavefront will be varied in these examples, the correlation

length (actually the width of the smoothing function) and the shape of the smoothing function. The

rms wavefront error is held at 0.1 wavelength, and the seed used to define the random number

array is fixed at 233425. The actual value of the seed is not important, only that it be the same,

so that all examples start with the same random number array, simplifying direct comparison of

the different examples.

4.4.1 Variation of Correlation Length

Reducing correlation length introduces more high spatial frequency variations in the OPD,

diffracting light further out into the PSF ring structure. In the examples shown in Figs. 4-26

through 4-29, the correlation lengths used are 0.33, 0.10, and 0.03 pupil diameters. Fig. 4-26

shows the OPD waveforms, Fig. 4-27 the PSF's and encircled energy functions, Fig. 4-28 the

MTF's, and Fig. 4-29 the *Autocorrelation functions.

The effects of varying the correlation length are self-evident, but some are worth comment-

ing on. Some of the more interesting variances are summarized in Table 4-6. A Gaussian smooth-

ing function 0.33 wide reduces the high spatial frequency oscillations so much that the wavefront

appears to be a form of spherical aberration. Note that the peak-to-peak wavefront error is
smaller than one would expect from the usual rule of thumb that OPD (peak to peak) = 5x OPD

(rms). The actual ratios are listed in the table. Strehl definition is usually associated solely
with the rms wavefront error, but here we see a small variation which indicates the Strehl defini-

tion to be somewhat less sensitive to high spatial frequency wavefront errors than to low spatial

frequency errors. The fraction of energy displaced outward by the wavefront error is about the

same in all cases, roughly 28 percent. Where it reappears is indicated in Table 4-6 by listing the

values of the radii corresponding to 10 percent and 1 percent displaced energy. For experiments

requiring, say 99 percent encircled energy in the smallest possible circle, high spatial frequency

wavefront error is very destructive.

Table 4-6 -- Some Quantities Affected by Varying Correlation Length

Correlation length 0.33 0.10 0.03

OPD(p-p)/OPD(rms) 2.9x 4.2× 5.0×
Strehl definition 0.662 0.672 0.677

r A (Airy radii) for:
10% displaced energy 2.0 7.7 20.8

1% displaced energy 3.4 10.1 41.0

The changes in the MTF and * Autocorrelation function are what would be expected from

the addition of higher spatial frequency wavefront errors. Low spatial frequency MTF is degraded

more severely, and high spatial frequency MTF less so. *Autocorrelation function values drop

to zero more rapidly, and show smaller excursions about zero for short correlation lengths.
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Fig. 4-27 -- PSF's, random wavefronts of different correlation lengths
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4.4.2 Variation of Smoothing Function

Four smoothing functions are available for use in generating random OPD functions with

GASPR: Gaussian, square, triangular, and linear exponentials. Examples of all four are given

here, for a common correlation length of 0.1. Plots are given for OPD waveform, PSF and en-

circled energy, and * Autocorrelation function. Plots for the Gaussian smoothing function exam-

ples are found in Figs. 4-26, 4-27, and 4-29. The remaining three examples are shown in Figs.

4-30, 4-31, and 4-32.

The main difference between the different smoothing functions is in the degree to which each

reduces the high spatial frequency components of the OPD waveform. The Gausslan smoothing

function completely eliminates the highest frequency components, while the square smoothing

function leaves the largest high spatial frequency residual. (This residual is a result of a form of

"aliasing," due to the sharp edge of the square smoothing function. As the edge of the smoothing

function passes each point in the set of random numbers defining the OPD, there is an incremental
change in the "smoothed" function, which shows up as a high spatial frequency residual component.)

The triangular and linear exponential smoothing functions produce intermediate smoothing, re-

sembling the effects of the Gaussian function more closely than those of the square smoothing

function. The principal changes are clearly related to the increased high spatial frequency content

of the OPD wavef0rm with square smoothing. Note in particular the behavior of the * Autocorrela-

tion function near its origin. In all examples except that involving square smoothing, the curves

appear roughly Gaussian near the origin. For square smoothing, however, the early parts of the

curve appear to be dropping linearly. Similar patterns will be observed for the 154-inch mirror

discussed in Section 4.7.

Table 4-7 summarizes the effects of different smoothing functions on the same quantities

listed in Table 4-6. Note in particular the radii for 10 percent and 1 percent displaced energy for

square smoothing. None of the other variations is at all significant.

Table 4-7 -- Some Quantities Affected by Varying the Smoothing Function

Smoothing function GAUS SQUA TRIA LEXP

OPD(p-p)/OPD(rms) 4.2x 4.3x 4.0x 4.1x
Strehl definition 0.672 0.670 0.670 0.671

r A (Airy radii) for:
10go displaced energy 7.7 7.2 7.2 6.3

1% displaced energy 10.1 9.9 9.9 9.9
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Fig. 4-31 -- PSF's, random wavefronts generated with different smoothing
functions
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4.5 EFFECTS OF APODIZATION IN THE PRESENCE OF WAVEFRONT ERROR

Apodization, or reduction in the PSF sidebands through gradation in the aperture trans-

mittance from center to edge of the entrance pupil, is sometimes cited as a technique for improv-

ing the image quality of optical systems. An extensive review article on the technique has been

written by Jacquinot s in "Progress in Optics." We have seen no articles which discuss how apodi-

zation affects systems with wavefront error; however, the program GASP, from which we derived

GASPR, contained a Gaussian apodization function for use with Gaussian cross section laser

beams. We have retained the capability in GASPR (see Section 4.1.1). ResuRs of our tests with

this apodization function are of interest in dealing with the scattered lightproblem.

Fig. 4-33 shows the effects of applying Gaussian apodization to a perfect, unaberrated lens.

The top PSF is for the unapodized lens. The other PSF's represent Gaussian apodization of a

form such that the transmittance has dropped to 1/e = 0.3679 at radius 0.5 and 0.25, respectively.

The degree to which the sidebands have been suppressed is clearly evident, although in the R =

0,25 case, the effective aperture diameter has also been reduced, increasing the effective diameter

of the image.

Fig. 4-34 shows the effects of apodization when a cosine phase grating, a = 0.0707 wavelength,

b = 12 cycles per radius, is present. While itis clear that a portion of the PSF has been sup-

pressed, itis also clear that the sidebands due to the cosine phase grating have not been reduced

significantly,only modified by convolution with a differentpupil. In fact,the third and fourth order

sidebands are now visible, where they had been masked by the Airy pattern. What has happened

is that pupil diffraction (for want of a better name) has been suppressed while wavefront error
diffractionhas not.

The effectis even more striking in Fig. 4-35, which involves a random wavefront error of

0.005 wave rms and 0.01 correlation length. 0.005 wave rms corresponds to a wavefront surface

deformation _ = 25 ,_in the middle of the visible spectrum. The top curve shows the OPD wave-

form. The second curve shows the unapodized case, where the presence of wavefront error is

barely detectable (Strehl definition= 0.999). The third curve shows apodization, R = 0.5, and the

presence of the wavefront error is now clearly evident.

There are two points in this presentation. First, apodization will not produce significant

reductions in the sideband structure ifsignificantamounts of wavefront error are present. Sec-

ond, apodization may be useful in measuring (or at least finding)any small amplitude wavefront

error by removing pupil diffractionas a masking element. This may be of significantbenefit in

tests for wide angle scatter due to surface microstructure (see Section 7.1 for further discussion).
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4.6 "WAFFLE" WAVEFRONT DUE TO CELL STRUCTURE OF MIRROR SUBSTRATE

The primary mirror substrate for the LST will be a lightweighted structure of ULE fused

silica or Cer-Vit. In either case, it will in effect consist of a thin plate supported by an eggcrate

structure. If made of ULE, the structure will be formed by fusing thin plates of the material, and

the cells will be square. If made of Cer-Vit, the structure will be machined from a solid blank,

and the cells will be hexagonal. At present, plans are to use ULE, with a 12- by 12-centimeter

cell size. It is this configuration which is examined here.

There is some concern that elastic deformation and restoration of the front plate during

polishing, and/or gravity release after insertion in orbit, will result in the appearance of bumps

at the center of each cell. These will produce a regularly spaced array of dimples in the wave-

front, which will give the OPD waveform map a waffled appearance, in turn producing an array of

spikes in the ring structure of the PSF. G. Lenertz has provided a simplified first order model

for estimating the maximum possible surface deformation. We have used the program FRAP-2D

to estimate the effects of this waffle wavefront on the PSF.

The model for computing the maximum deflection 8 is

U

m

mm

J

m
i

Max 6 = 0.0487 w a 4 (1 - _2) (36) --
E t 3

where 5 = peak-to-valley surface deformation, inches

w = unit applied load = p t

p = density _- 0.1 lb/inch 3
a = cell dimensions = 4.72 inches (12 cm)

= Poisson's ratio - 0.2
E = Young's modulus - 107 psi

t = plate thickness, inches

(Lenertz' original notation is used here.) For a nominal plate thickness of 1 inch (2.54 cm),

Eq. 36 leads to a maximum 6 = 2.32 × 10 v inches, or 0.0093 wavelength surface deformation at
= 0.6328 micrometer. The peak-to-valley wavefront deformation will therefore be 0.0186 wave-

length at }, = 0.6328 micrometer, 0.0363 wavelength at X = 0.325 micrometer and 0.0970 wavelength

at X = 0.1215 micrometer, according to this estimate.

FRAP-2D was used to estimate the effects of a waffle wavefront on the PSF. A 256 by 256

matrix was used to define the pupil function, with the pupil diameter being 125 units. The OPD

waveform was defined by the equation

(37)OPD(x, y) = (K/4)[1 + cos (2=/5)] [1 + cos (2_y/5)],

with the cells being 5 units on a side (12 cm for a 3-meter diameter, or b = 12.5 cycles per

radius). K is the peak-to-valley wavefront error in radians. Values of 0.1, 0.25, and 0.5 radians

were used, corresponding to 0.0159, 0.0398, and 0.0796 wavelengths peak to valley, respectively.

(To convert to rms, multiply by qrS-/8 = 0.28.)

FRAP-2D uses a fast Fourier transform technique which restricts the output format for the

PSF. With a 125-unit diameter pupil in a 256-point square pupil matrix, sample points in the

PSF are spaced at 125 k/256 Dp radian intervals in image space. This is a spacing of 0.40 Airy

radii, which does not give very good resolution in the ring structure. The results are good enough

to show the spikes due to.the waffle wavefront with OPD values of the magnitude indicated above.

The output plots are two-dimensional perspective plots. A log relative intensity scale has been

used for the PSF's to bring out the diffraction spikes. A selection of outputs are shown in Figs.

4-36 through 4-39.
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Fig. 4-36 is the PSF for a perfect lens for comparison. (It also illustrates why rotationally

symmetric wavefronts have been used for most of the analysis in this paper.) Fig. 4-37 is the

PSF for a 0.5-radian peak-to-valley waffle wavefront. Fig. 4-38 is the same wavefront with an

E = 0.32 diameter ratio central obstruction. Fig. 4-39 shows the MTF for the latter case.

The diffraction spikes appear in a 3 by 3 array including the central maximum for the PSF.

The eight added spikes fall into two height categories, with the side spikes being high than the

corner spikes. Relative heights h*, measured with respect to the central maximum are the same

with or without the central obstruction, at least in the examples we examined. The results are

summarized in Table 4-8.

Table 4-8 -- Relative Heights for Diffraction Spikes

75 OPD(p-v) w h* (side) h* (corner)

0.5 0.0796 0_0222 0.00382 0.000942

0.25 0.0398 0.0111 0.000953 0.000234

0.1 0.0159 0.0044 0.000154 0.000037

An equation of the form

h* = C (OPD) 2 (38)

was fit to this data. Constants of 0.604 for the side spikes and 0.149 for the corner spikes fit the

data to within 3 in the third significant figure, generally. This is probably near the limit of

accuracy of the computer derived results.

The positions of the spikes can be determined using the grating equation, which gives x and

y coordinates for each spike. This gives values for the distance from the central maximum of

20.50 and 28.99 Airy radii for the side spikes and corner spikes, respectively. The relative in-

tensity for the diffraction pattern envelope is given by

I_ = 0.0452/rA3 (39)

Thus I_ = 5.25 × 10 -6 and 1.86 x 10 -_ for the side and corner spike positions, respectively.

Eq. 38 can be used in conjunction with Lenertz' data for expected surface deflections to

compute the probable diffraction spike heights to be expected in the LST image. This has been
done and the results summarized in Table 4-9. Relative heights are listed in terms of h*, h*/I_

and m* stellar magnitudes.

Table 4-9 _ Estimated Diffraction Spike Heights for LST

Side Spikes Corner Spikes

X, /_m OPD(p-v) h* m* h*/I_ h* m* h*/I_

0.6328 0.0186 0.000210 9.2 39.9 0.000052 10.7 27.8

0.3250 0.0363 0.000794 7.8 151 0.000196 9.3 105

0.1215 0.0970 0.00568 5.6 1,080 0.00140 7.1 754

It should be understood that these are first-order calculations which use simplified models

for the surface deformation and the shape of the wavefront deformation, and do not consider inter-

4-57

m



Fig. 4-36 -- PSF for perfect lens
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Fig. 4-37 -- PSF for a 0.50-radian waffle wavefront error (0.0796 wavelength)
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Fig. 4-38 -- PSF for 0.50=radian waffle wavefront error plus 0.32 central

obstruction
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Fig. 4-39 -- MTF for example of Fig. 4-38
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actions with other types of wavefront error. The analysis is also monochromatic; in white light,

the eight diffraction spikes will be replaced by dispersed spectra spread along lines radiating
outward from the central maximum. These qualifications having been stated, however, this data

makes it appear that diffraction spikes may present a significant problem.
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4.7 ANGLO-AUSTRALIAN TELESCOPE PRIMARY MIRROR

Dr. David S. Brown of Sir Howard Grubb Parsons and Company, England, has provided us

with interferometric measurements of the surface irregularities of the I54-inch-diameter primary

mirror of the Anglo-Australian Telescope (A.A.T.), which they have recently completed. This

data is unique in that itcontains the only quantitative high spatial frequency measurements of

mirror surface irregularities which is currently available. The data was taken with a shearing

interferometer, and measures wavefront deviation at 1-inch increments along 20 mirror radii.

This puts the results in an ideal format for analysis using GASPR. The results of such analysis

do not duplicate the actual PSF of the A.A.T. primary mirror, but they show the effects of the

types of ripple actually encountered in a real telescope mirror.

4.7.1 The Input Data

Two forms of data were supplied by Dr. Brown. One is a coarse wavefront map of the entire

mirror, specified by an 11 by 11 grid of data points (see Fig. 4-40). The other is a table of OPD

values at 1-inch increments along 20 mirror radii (see Table 4-10). All measurements were made
o

at X = 5780 A, and each value represents a wavefront error, not a mirror surface error. The 20

radii were grouped into two sets, as indicated in Fig. 4-41. The wavefront error data has been

plotted in Fig. 4-42.

In his letter, Dr. Brown describes the measurement and data reduction technique as follows:

"The radial wavefront profiles were obtained from interferograms, all taken at the same

focal setting with the interferometer (and slit source) rotated to different position angles. For

each interferogram orientation, a zero shear interferogram was also taken and the difference of

the sheared and unsheared interferograms used in the reduction process to avoid any systematic

errors due to gravitationally induced flexures in the interferometer itself. This procedure was

repeated for each of four positions of the mirror on its support system (at position angles of 0 °,

90 °, 180 °, 270 °) and each profile represents the mean of the profiles obtained in the four positions

of the test support. Interferogram measurements were made on prints using a simple interpolat-

ing device (developed by Grubb Parsons), and the reduction technique was essentially the simple

summation method given in my paper of 19554, though with the volume of data involved the mea-

surements had to be computer processed.

"The profiles were obtained along a single diameter per interferogram, parallel to the shear

direction. The relative heights of the different profiles were obtained by summing along short

chords above and below the central hole to !ink the starting points of different profiles. Signifi-

cant closing errors were found for the polygon composed of these short chords and for this reason

it is possible that the absolute height of some of the profiles could be in error by as much as A/20.

A more satisfactory procedure would have been to link the various profiles using several different

polygons but available time and effort did not permit this at the time."

Figuring of the mirror was carried out by a computer assisted process which has been

described in reference 5. In his letter, Dr. Brown describes the mirror fabrication process as
follows:

"Polishing and figuring the mirror was carried out almost entirely with a single, full size

"Flexible" lap. The figuring to stage 1 specification followed the fairly standard (for us) routine

of reducing astigmatism to an acceptably small value followed by aspherizing and figuring, treat-

Ing the mirror as a figure of rotation. This approach proved completely adequate to completion

of stage 1 work (99 percent of energy within 1.0 arc-second image diameter, 95 percent within

0.7 arc-second, and 80 percent within 0.4 arc-second). On completion of stage 1, measured pri-

mary astigmatism was about 0.25 arc-second circle of confusion and at commencement of stage 2
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figuring it was thought necessary to reduce primary astigmatism to have a good probability of

achieving stage 2 specifications. From then on the mirror was not considered to have rotational

symmetry and described by a series of profiles obtained by the techniques outlined earlier in this

letter. During most of this stage an adequate description of mirror errors was obtained by use

of 10 profiles each with measurements at 1-inch intervals, though at times greater volumes of

data had to be handled. During both stages the figuring was carried out with computer assistance

apart from a limited period midway through stage 2 when industrial action limited our data hand-

ling capacity . . ."

Both the coarse wavefront error map and several of the radius profiles have been used in

the analysis described below.
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Fig. 4-40 -- Coarse wavefront data at X = 578 nm

4-63



m

J

m

D

_ I

Q

9

8A

7A

Top

10A 1 IA

2A

3A

Wavefront profiles give profile heights at
1-inch intervals from a radius of 25 inches

to a radius of 77 inches.

Profiles are wavefront errors for

= 578 nm

Profiles 1-10 are referred to mean focus

for 1-10 profiles

Profiles 1A-10A are referred to mean

focus for IA-10A profiles

All profiles unrelated to absolute height

m

J

m

J

6A 5A
6

Fig. 4-41 -- Arrangement of wavefront profiles on Anglo-Australian

telescope 154-inch primary mirror

W

m

m

w

4-64

W

I

g

m

u



_7

--[ 25 35 45 55 65 ?5

0.10X OPD Radius, inches

Fig. 4-42 m Radial wavefront profiles for Anglo-Australian telescope 154-

inch primary mirror

4-65



m

m

o%

o3

(D

"_ o<:

_ u N

_ m

4-66 REPRODUC_ILITYOFTHE

ORIGINAL PAGE _POOR

W

i

J

i

N

J

W

z

w

w

I

w

J

i

_m



T =
L

4.7.2 Two-Dimensional Wavefront Analysis

A brief two-dimensional wavefront analysis of the 154-1rich mirror has been performed,

based on the 11- by 11-point wavefront error map of Fig. 4-40. The purpose of the analysis was

to show the presence of rotational asymmetry in the wavefront, and to indicate how this will affect

image quality at various wavelengths. The results are shown in Figs. 4-43 through 4-46.

A polynomial equation was fit to the 11- by 11-point grid and used to interpolate data points

in a 33- by 33-point grid. This smoothed wavefront is plotted in Fig. 4-43. This wavefront map

shows the saddle-shape characteristic of astigmatism. The peak-to-peak wavefront error is

0.65 wavelength, and the rms is 0.12 wavelength. A comparison of this data to the more detailed

measurements along separate radii shown in Figs. 4-41 and 4-42 and Table 4-10 shows general

agreement as to the shape of the wavefront. The more detailed measurements indicate a peak-to-

peak wavefront error of 0.88 wavelength, due to high and low points along the rim of the mirror

missed by the coarse grid. Note also that the peak-to-peak wavefront error of the wavefront

averaged over each zone is only 0.108 wavelength, indicating that the truly rotationally symmetric
component of the wavefront error is a small fraction of the asymmetric component.

Point spread functions were computed directly from the 11- by 11-point grid. The wavefront
o

error values were scaled to simulate use of the telescope at _ = 3250 and 1215 A, as well as the
o

test wavelength of 5780 A. In examining the resulting PSF's, shown as linear scale perspective

plots in Figs. 4-44 through 4-46, it should be noted that these plots are normalized to 1.0 for the

highest peak in the PSF. Thus as the waveien_ decreases and the central peak intensity (the

Strehl definition) decreases, the ring structure becomes more prominant in part because of scale

change in the plot. Thus the three PSF's should not be compared directly, but used only to indi-

cate relative differences in height between the central maximum and the ring structure. Note that

in Fig. 4-46 (_ = 1215 _,) the central maximum is no longer the highest point in the pattern.

The three figures show an increasing prominance in the ring structure as the wavelength

decreases. They also show large numbers of bumps in the ring structure. It is difficult to be

certain whether these are real, or an artifact of the small number of sampling points used to de-

fine the wavefront. We have run similar calculations using the 33 by 33 interpolated data point

grid, and the same lumpiness appears at _= 1215 ._. This would rule out the simplest forms of

aliasing. Note, however, that the rms wavefront error at _ = 1215 A is roughly 0.6 wavelength,

which is enough to thoroughly destroy the inner structure of the PSF.
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4.7.3 RotationaUy Symmetric Wavefronts Based on A.A.T. Radius Profiles

Fig. 4-42, which plots all twenty radial wavefront profiles supplied by Dr. Brown, shows
that there is a considerable amount of fine structure in the mirror surface. Periods of the fine

structure appear to be on the order of 4 to 5 inches, and heights generally do not exceed 0.1

wavelength at 5780 _, the test wavelength. Much of this fine structure is damped out in taking

the average over the same zone height (radius) in all twenty profiles, which indicates that it is

not truly rotationally symmetric. However, individual ridges appear to be present over several

adjacent radius profiles, and sometimes vary in zone height from profile to profile. It is possible

that averaging around an elliptical zone would reveal a more prominant fine structure in the

averaged profile. If so, or if the ridges merely extend over portions of a complete zone, using

the individual radius profiles as the profile of a rotationally symmetric wavefront allows us to

examine the effects of such fine structure on image quality, knowing that this particular example

exists in a real mirror.

Three profiles have been selected from Table 4-10 for examination using GASPR. Radius
5A was selected because it has considerable fine structure with almost no obvious low spatial

frequency structure. Radius 9 has both low and high spatial frequency components, and thus is a

somewhat better representative of the real wavefront. The averaged wavefront profile was chosen
as the third example to see if the rotationally symmetric component was of a large enough magni-

tude to be noticeable when scaling the wavefront error to model performance at shorter wave-

lengths. Three wavelengths were chosen, the test wavelength of 5780 -_, and 3250 and 1215 _. The

results are shown in Figs. 4-47 through 4-54.

In each case, the 53 data points from Table 4-10 were interpolated using a parabolic fit,

generating the 512 points required for Gausstan quadrature. These were then scaled to the appro-

priate values of OPD for the three wavelengths. The results are shown in Fig. 4-47, for each

radius at the shortest wavelength. (In comparing the plots, note that a different OPD scale is

used in each case.) All show evidence of what appears to be a relatively high spatial frequency

harmonic component. This will be discussed further in Section 4.7.4. Table 4-11 gives rms
wavefront errors for all nine wavefronts. Note that these are all significantly lower than the value

of 0.12 wavelength rms at X = 5780 ._ given for the coarse two-dimensional wavefront map in

Fig. 4-43.

Table 4-11 m RMS Wavefront Error for the Rotationally

Symmetric Wavefronts Generated From the A.A.T. Data

Radius Profile

Wavelength 5A 9 Average

5780 _ 0.0465 0.0963 0.0317

3250 _ 0.0810 0.1713 0.0564

1215 _ 0.2167 0.4581 0.1508

Figs. 4-48 through 4-53 show the PSF's and MTF's for these nine cases, grouped by radius

profile and wavelength. All show heavily degraded image quality at the shortest wavelengths,

particularly in terms of MTF degradation. This is most evident for radius 9 and least evident for

the averaged radius, as expected from the rms wavefront error data.

It is intei-esting to examine the PSF's for evidence of single harmonic cosine phase gratings.

There is some evidence that a sideband from such a phase grating exists at about 28 to 30 Airy

radii. This is most strongly evident for radius profile 9 at 1215 ._ (Fig. 4-50c), both from increase
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in relative intensity and from the shoulder in the encircled energy curve. It can also be seen for

the averaged profile (Fig. 4-52c), although not as prominently. The evidence is not as strong for

radius 5A, except in that the relative intensity seems to be raised somewhat over the entire region

from 20 to about 34 Airy radii. This could indicate a series of closely spaced spatial frequencies.

Finally, Fig. 4-54 shows *Autocorrelation functions for each radius profile. In this case,

different wavelengths were chosen to minimize the computational errors by setting the rms wave-
front error to between 0.05 and 0.10 wavelength. Note that none of these curves show any Gaussian

characteristics near zero radius. The rapid (compared to Gaussian) drop in the * Autocorrelation

function near zero radius is indicative of the pre§ence of high spatial frequency components in the

wavefront error, and is most prominant for radius 5A (Fig. 4-54a), where the low spatial frequency

component has been suppressed. The roughly linear drop for the averaged profile *Autocorrela-
lion function is similar in appearance to that for the square-smoothed random wavefront (see

Fig. 4-32a), near zero radius.
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4.7.4 Spatial Frequency Spectrum Versus Displaced Energy

The GASPR printout include_ the function displaced energy, DE = EE(perf) - EE, the differ-

ence between the encircled energy for a perfect, unobstructed lens and for the wavefront error

function under study. The displaced energy indicates the fraction of the total energy in the image

which has been displaced outward beyond a given radius. The incremental displaced energy

ADE = DE(r1) - DE(r2) may be computed from this data. The incremental energy function indicates

the amount of energy which has been added to (positive value) or subtracted from (negative value)

the zone Ar = r 2 - rl, compared to the PSF for a perfect lens. R is, in effect, the zonal scatter
function. The true scatter function is proportional to ADE/_(r 2 + rl). The integral of ADE from

r = 0 to r = _o is by definition zero, since it measures both where the scattered light comes from

and where it goes to. The energy "scattered" by the central obstruction is also included.

For our rotationally symmetric wavefronts, it is possible to determine the spatial frequency

distribution of the wavefront irregularities by taking the one-dimensional Fourier transform of

the radius profile. An example of the resultant amplitude spectrum is shown in Fig. 4-55 for the

wavefront profile averaged over zones. The spatial frequency scale is in cycles per inch, and

the spectral density scale in arbitrary units of the form wavelengths amplitude per cycle. The

maximum spatial frequency is limited to 0.5 cycle per inch by the sampling interval, which is 1

inch.

Coupling the amplitude spectrum plot with the incremental displaced energy function allows

comparison of the scatter function with the spatial frequency distribution of the wavefront irregu-

larities causing the scattering. This gives some measure of the validity of models based on a

spectrum of cosine phase gratings. To carry out the comparison, both the spatial frequency spec-

trum and incremental displaced energy have been computed for radius 5A and 9 of the A.A.T.

wavefront profiles. The results are given in Table 4-12 and Figs. 4-56 through 4-59.

Table 4-12 lists the incremental displaced energy values for 1 Airy radius zones from

r = 0 to r = 50 Airy radii. Data is given for a perfect lens with a 0.324-diameter ratio central

obstruction, and for the two wavefront profiles, scaled for k = 3250/_. The values are fractions

of the total energy in the image. Figs. 4-56 and 4-58 are the amplitude spectra for the two pro-

files, and Figs. 4-57 and 4-59 are the corresponding incremental displaced energy curves. To
facilitate the comparison of the two curves, the square root of _DE has been plotted instead of

ADE, since this corresponds more directly to the amplitude of the source phase grating. The
radius scales have also been matched, with one Airy radius corresponding to a spatial frequency

of 0.007919 cycle per inch.

The correlation between peaks in ADE _/2 and spatial frequency components in the amplitude

spectrum is most striking in the case of radius profile 5A, where the low spatial frequency com-

ponents are of relatively small amplitude. The variation of amplitude with radius/spatial fre-
quency also corresponds well between the two curves. The correlation is less striking for profile

radius 9, where the low spatial frequency components are of considerably larger phase amplitude.

Some peaks in the incremental displaced energy function correspond directly to peaks in the am-

plitude spectrum, but others do not, and the differences in amplitudes are more marked than for
radius 5A. This is undoubtedly due to interactions between different spectral components of the

type noted in, for example, Figs. 4-15b and 4-17c. (The central obstruction contributes to this

process as well.) To facilitate analysis for any reader interested in tracking down the inter-

actions, the position of the first few orders of sidebands for the five largest amplitude spatial

frequency components has been marked in Fig. 4-59. Note that there is a definite scattering

maximum corresponding to the second harmonic of spatial frequency B.

Several points of interest should be noted in this data. All of these curves show the presence

of strong spectral components, and some of the strongest are present in all three cases (including
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the averaged profile). There is a slight shift in the exact spatial frequency from curve to curve,

which may only be an indication that the zonal ridges which go to make up a spatial frequency

component are slightly elliptical, rather than circular. Note in particular the E component in

Fig. 4-58, which has a relatively high spatial frequency (0.22 cycle per inch, or roughly 17 cycles

per radius). This does persist through all three cases, and indicates that fairly strong high

spatial frequency irregularities can exist even when the mirror is polished with a single flexible

lap. Such zonal structure is usually attributed to the use of subaperture laps to polish aspheric

surfaces.
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Table 4-12 m ADE for the A.A.T. Radius Profiles 5A and 9, and for

a Perfect Lens With a Central Obstruction E = 0.324

I

u.--

L

zone perfect lens radius radius

= 0.324 5A 9

0-i -0.175691 -0.298612 -0.542428

1-2 0.162340 0.142927 0.140169

2-3 -0.016152 0.009363 0.078501

3-4 0.011289 0.026041 0.072866

4-5 0.001120 0.014215 0.069280

5-6 0.002056 -0.002934 0.021566

6-7 0.005453 0.004631 0.053941

7-8 -0.000684 0.011390 0.032721

8-9 0.002261 0.006046 0.008297

9-10 -0.000506 0.005727 0.004830

i0-ii 0.001071 0.010052 0.000809

11-12 0.001205 0.002579 0.003003

12-13 0.000165 0.003214 0.006676

13-14 0.000858 0.004877 0.002442

14-15 -0.000368 0.003248 0.003151

15-16 0.000672 0.005131 0.002024

16-17 0.000320 0.004691 0.000061

17-18 0.000321 0.004686 0.000345

18-19 0.000374 0.004215 -0.000049

19-20 -0.000267 0.002723 0.000204

20-21 0.000480 0.004381 0.000332

21-22 0.000115 0.002373 0.000097

22-23 0.000292 0.000209 0.000054

23-24 0.000154 0.000320 0.003375

24-25 -0.000092 0.000737 0.004545

25-26 0.000295 0.003502 0.001292

26-27 -0.000049 0.001506 0.003070

27-28 0.000314 0.003123 0.004029

28-29 0.000043 0.005664 0.002998

29-30 -0.000009 0.001984 0.001712

30-31 0.000187 0.000535 0.002373

31-32 -0.000070 0.000521 0.002267

32-33 0.000272 0.002079 0.001268

33-34 -0.000011 0.001795 0.000535

34-35 0.000045 0.000292 0.000785

35-36 0.000108 0.000151 0.002465

36-37 -0.000062 0.000425 0.001959

37-38 0.000225 0.000934 0.000422

38-39 -0.000034 0.000347 0.000191

39-40 0.000076 0.000257 0.000281

40-41 0.000051 0.000177 0.001103

41-42 -0.000042 0.000105 0.000607

42-43 0.000177 0.000340 0.000254

43-44 -0.000038 0.000060 0.000504

44-45 0.000090 0.000118 0.000426

45-46 0.000012 0.000214 0.000255

46-47 -0.000020 0.000230 0.000130

47-48 0.000131 0.000229 0.000088

48-49 -0.000031 0.000039 0.000267

49-50 0.000092 0.000280 0.000120
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Fig. 4-57 -- ADE for radius 5A; plotted as _ for direct comparison to

amplitude spectrum plot
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4.7.5 Effective Radiance Plots

The PSF data presented in Section 4.7.3 is all in normalized optical units. For comparison

of performance at different wavelengths, effective radiance plots are more useful, giving the

effective radiance and encircled energy as a function of image radius in arc-seconds. Six such

curves are presented in Figs. 4-60 and 4-61 for wavefront radius profiles 5A and 9, at the pre-

viously specified wavelengths. A stellar magnitude of 10 was selected to define the effective

radiance in magnitudes per square arc-second. The curves may be scaled appropriately for other

stellar magnitudes.

Only one comment will be made here concerning the results shown in these figures. It is

interesting to note that if one were to define image quality in terms of the diameter blur circle

containing roughly 95 to 96 percent of the energy in the point source image, the diameter in are-

seconds would be very nearly the same at all three wavelengths.
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4.8 SIMULATED LST WAVEFRONT

Wavefront profile data for the A_. T. primary mirror arrived before the curve-fitting

option had been added to GASPR. An early attempt at fitting one of the radius profiles (the

averaged profile) by hand was made using sums of cosine phase gratings and Gausstan profile

ridges. The attempt was successful, and produced results comparable to those obtained later

with the curve-fitting option. We have revived this hand-fit model, with minor modifications, to

simulate the type of wavefront error which might be expected from the LST (as much as this is

possible with a rotationally symmetric wavefront.) Thus the larger scale wavefront irregularities
in this model are similar to those found in a real telescope mirror. The only significant differ-

ence between this model and the A.A.T. profile from which it is derived lies in the addition of a

high spatial frequency random component representing small irregularities of too high a spatial

frequency to show up in the A.A.T. data.

Table 4-13 shows the basic input data used to define the simulated LST wavefront, scaled to

the three indicated wavelengths. The scale factor was selected to give an rms wavefront error

of 0.050 wave at 632.8 nanometers. This sca!es to 0.097 and 0.260 wavelength at 325 and 121.5

nanometers, respectively. The telescope has a central obstruction of diameter ratio 0.32.

The RAND term defines the high spatial frequency component and is intended to simulate

surface roughness. The rms wavefront error of 0.005 wave at 632.8 nanometers corresponds to

a mirror surface irregularity of 15.8 -_ rms (31.6 _ rms on the wavefrout), which would represent

a very smooth surface, if the characteristic lateral dimensions were small enough. True surface

microstructure has lateral dimensions on th_order Of a few wavelengths. The sample point spac-

ing for RAND is 0.006 of a radius, or 7.2 to 9 millimeters for the 2.4- to 3.0-meter aperture being

considered. The spatial frequency bandwidth of the RAND component is thus far too small to

accurately represent real mtcrostructure. The resultant errors will be in the angles at which

scattering occurs, not in the total scattered light; however, total scattered light is proportional

to the rms wavefront error.

Figure error is represented by the first two GAUS terms coupled with the 1.0-cycle-per-

radius COSF term. The 17.05-cycle-per-radius COSF term in brackets represents a visibly

prominaut harmonic component which was apparent at zone heights of 0.45 and 0.75 in the A.A.T.

profile. The rest of the Gausslan ridge terms were used to fit individual bumps and dips in the

original wavefront. (Note: The original hand-fit was done prior to computing the amplitude spec-

trum shown in Fig. 4-55. It is interesting to note that that figure shows prominent peaks at 1.4

and 17.1 cycles per radius.)

Fig. 4-62 shows the wavefront profile and *Autocorrelation function for the simulated LST

wavefront at 325 nanometers. Figs. 4-63 and 4-64 show the PSF and MTF curves for all three

wavelengths in normalized optical units. These are similar to the corresponding curves for the

A.A.T. mirror. A comparison of Figs. 4-52c and 4-63c illustrates the changes caused by addition

of the high spatial frequency RAND component.

To compare performance at different wavelengths, it is desirable to plot the PSF in the
form of effective radiance versus radius in arc-seconds, and to plot MTF as a function of spatial

frequency in cycles per millimeter or cycles per arc-second. We also wish to compare perfor-
mance of the 2.4-meter and 3.0-meter aperture telescopes. Figs. 4-65 through 4-67 show the

effective radiance plots at three wavelengths for both telescopes, paired by wavelength. Fig. 4-68

shows the MTF at each wavelength, with separate spatial frequency scales for each telescope.

The differences between the two telescopes are purely ones of coordinate scale factors,

speaking in terms of the plots. The more interesting variations are a function of wavelength.

Note, for example, that the radius for 96 percent encircled energy is roughly the same at all

three wavelengths, being 0.35 arc-second for the 3.0-meter telescope and 0.45 arc-second for the
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Table 4-13 -- Inputs to Generate Simulated LST Wavefronts
m

mm

WAVL 682.8 NM

RAND 233425 0.005 SQUA 0.01

GAUS 0.75 -0.Iii 0.25 1

GAUS 0.25 0.085 0.25 1

GAUS 1.02 -0.060 0.Ii 1

GAUS 0.44 -0.026 0.05 1

GAUS 0.56 0.034 0.04 1

GAUS 0.68 -0.017 0.05 1

GAUS 0.53 0.026 0.04 1

GAUS 0.48 0.017 0.02 1

GAUS 0.71 -0.026 0.01 1

GAUS 0.84 -0.021 0.03 1

COSF 0.170 1.0 1.5708 1

'COSF 0.026 17.05 0.0 ilGAUSF 0.45 1.0 O. 2

GAUSF 0.75 0.5 0.05

WAVL 325.0 NM

RAND 233425 0.010 SQUA 0.01

GAUS 0.75 -0.216 0.25 i

GAUS 0.25 0.166 0.25 1

GAUS 1.02 -0.117 0.ii 1

GAUS 0.44 -0.O51 0.05 1

GAUS 0.56 0.066 0.04 1

GAUS 0.68 -0.033 0.05 1

GAUS 0.53 0.051 0.04 1

GAUS 0.48 0.033 0.02 1

GAUS 0.71 -0.051 0.01 1

GAUS 0.84 -0.041 0.03 i

COSF 0.331 1.0 1.5708 1

USF 0.45 1.0 0.2

GAUSF 0.75 0.5 0.05

WAVL 121.5 NM

RAND 233425 0.026 SQUA 0.01

GAUS 0.75 -0.578 0.25 i

GAUS 0.25 0.443 0.25 1

GAUS 1.02 -0.312 0.ii i

GAUS 0.44 -0.135 0.05 1

GAUS 0.56 0.177 0.04 1

GAUS 0.68 -0.089 0.05 1

GAUS 0.53 0.135 0.04 1

GAUS 0.48 0.089 0.02 1

GAUS 0.71 -0.135 0.01 1

GAUS 0.84 -0.109 0.03 1

COSF 0.885 1.0 1.5708 1

GAUSF 0.45 i. 0 0.2

GAUSF 0.75 0.5 0.05
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2.4-Meter Telescope Spatial Frequency, cycles per arc-seconds
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Fig. 4-68 u MTF plots for 3.0- and 2.4-meter telescopes at three wavelengths

with spatial frequency in cycles/arc-second
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2.4-meter telescope. Note also the remarkable similarity between the MTF' s at 632.8 and 121.5

nanometers. The nominal cutofffrequencies for the 3.0-meter telescope are 23.0, 44.8, and 119.7

cycles per arc-second at 632.8, 325, and 121.5 nanometers, respectively. The apparent cutoff

of the 121.5-nanometer MTF at 23 cycles per arc-second is a function of wavefront error. So too

is the shoulder in the MTF at 14 to 15 cycles per arc-second, although itlooks very much like the

shoulder in the 632.8-nanometer MTF, which is due to the central obstruction. The similarity

in these MTF's may be useful. A TV sensor designed to exploit the optical system resolution to

its maximum at 632.8 nanometers will be nearly optimally coupled at 121.5 nanometers (assuming

ithas adequate spectral coverage). Below 10 to 12 cycles per arc-second, the performance is

rather similar at all wavelengths. Only the tailof the MTF is extended greatly at 325 nanometers.

An MTF of 0.10 is sometimes used to indicate the maximum possible spatial frequency that

can be resolved in practice. Table 4-14 summarizes the 0.I0 modulation spatialfrequencies for

both telescopes.

Table 4-14 -- Spatial Frequency at Which MTF = 0.10 for 2.4-Meter

and 3.0-Meter Simulated LST's (cycles per arc-second)

Fraction of

k, nanometers 3.0-Meter 2.4-Meter Cutoff

632.8 18.4 14.7 0.80

325 33.9 27.1 0.76

121.5 16.5 13.2 0.14

4.9 STATISTICAL MODELS FOR RIPPLE AND FIGURE ERROR

The analyses of the preceding sections have been of a deterministic nature, using specific

wavefronts to calculate specific PSF and MTF curves. Deterministic analyses can produce

accurate results for the specific cases analyzed, but there is some question as to the validity of

using one specific example as an indication of the performance to be expected from other exam-

ples. Different optical systems are bound to produce wavefront irregularities which differ in

structural details. Thus in using a specific wavefront to predict expected performance from a

different optical system, there is always a strong chance that the choice of model wavefront is

inappropriate.

In general, optical analysts prefer to use statistical models, since these are presumed to

define the average performance of a large number of cases. Thus the chance of picking a singu-

larly inappropriate model is presumed to be smaller. This is not the case if the statistical model

is based on an inappropriate statistical foundation, however. There is mounting evidence that the

statistical model based on a Gaussian autocorrelation function, which is commonly used in optics,

is not rigorously valid, and may be a poor approximation for some applications. Of particular

interest to this study, the Gaussian autocorrelation function implies that the wavefront it repre-

sents has little or no high spatial frequency irregularities. Thus Gaussian autocorrelation func-

tions are singularly inappropriate in a study of ripple and surface microstructure.

The complete statistical model we refer to is based on the MTF degradation function of

Eq. 1. The underlying assumption is that the MTF degradation due to random wavefront error,

Tw, is independent and separable from the MTF degradation due to the finite pupil size and sys-

tematic aberrations. Thus if T 1 is the perfect lens MTF (we generally ignore the systematic

aberrations as being too small in LST-type telescopes) the system MTF is given by

T(v) = Too(v) x TI(_,) (40)
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To0 is then defined by Eq. 1, coupled with a Gaussian autocorrelation such as that of Eq. 2. The

attraction of this model is its mathematical simplicity. We have used it extensively ourselves, to

good advantage, in analyzing image quality criteria for the LST 8.

Eq. 40 has been proven valid by E. L. O'Neill 7. In the same reference he has derived

Eq. 1, in slightly different form, based on the assumption that the random wavefront irregularities

have a Gaussian height distribution. There is no implicit assumption as to the shape of the auto-

correlation function in that derivation, but a Gaussian shape is usually assumed for reasons of

convenience. The assumption of Gaussian height distribution appears valid, and therefore Eq. 1

should be reasonably accurate. Indeed, Schwesinger 8 has shown it to be a good numerical approxi-

mation for small wavefront errors even when the height distribution departs radically from

Gaussian. (He gives the corresponding equation for a triangular height distribution in the appen-

dix to his article and compares numerical values for different amounts of wavefront error.) We

have shown evidence of the validity of Eq. 1 for cosine phase gratings of small phase amplitude

in earlier sections. Thus, questions of validity are tied entirely to the autocorrelation function.

The original treatments of random wavefront error arose out of a study of the propagation

of plane wavefronts through the turbulent atmosphere, and this may be part of the reason the

Gaussian autocorrelation function was so easily accepted. In treating random surface irregulari-

ties on telescope mirrors, the atmospheric turbulence models were adapted without significant

change. But atmospheric turbulence and mirror surface irregularities differ in two important

respects. First, atmospheric turbulence varies with time, and the long exposures of astronomy

average the effects over many changes in the wavefront irregularity function. Thus, ensemble

averaging should be a legitimate model. A mirror surface represents a fixed wavefront irregular-

ity function, however, and it is not clear that models based on ensemble averaging are legitimate.

Second, the wavefront irregularities introduce d by atmospheric turbulence of the type encountered

in astronomy are free of very high spatial frequency components. This is definitely not true of

mirror surfaces where the characteristic lateral dimensions of surface irregularities may range

from large fractions of an aperture diameter down to small fractions of a wavelength.

In previous sections we have shown through the * Autocorrelation function how non-Gaussian

the autocorrelation function can be, even for Gaussian smoothed random functions having rotational

symmetry. In this section, we will examine the nature of the autocorrelation function in more

detail. First, we will consider some of its fundamental properties, related to the form it should

take for mirrors. In this regard, we will make extensive reference to the paper by Schwestnger

cited above. (Note: An English translation of this paper will be found in Appendix A.) Second, we

will look at a number of real and generated two-dimensional and rotationaUy symmetric auto-

correlation functions. Since these are calculated from measurements passing only low spatial

frequency components, we will discuss the effects of high spatial frequency components using the

• Autocorreiatton functions as examples. Third, both our deterministic and statistical models

are rotationally symmetric. We will therefore give some attention to the degree of variation from

the performance predicted by these models to be found in real telescopes, where the wavefront

error is far from rotattonally symmetric.

The shape of the autocorrelation function for real telescope mirrors, and for mirrors in

general, is a subject being actively pursued by a number of people, most of whom will be identi-
fied in the course of this section and Section 5. Although a number of the properties of the real

autocorrelation functions are now evident, there still exists no specific agreed upon model. The

material presented in this section was collated too late to have an impact on the computer pro-

gram models we have generated, which therefore took the deterministic route of GASPR. We

hope this material will contribute to generating a more complete statistical model for future use.
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4.9.1 General Properties of Wavefront Autocorrelation Functions

Most early analysis of random wavefront error was done in terms of a deformed plane

wavefront of infinite lateral extent, and this forms a convenient point of departure for our dis-

cussion. The random wavefront error represents departure from flatness in the phase front of

this plane Wave. We represent this wavefront error by a scaler optical path difference function

f(x, y), which measures the distance in wavelengths by which the phase front leads or lags behind

the reference plane. The OPD function is defined to have a zero mean, f(x, y) = 0, by positioning

the reference plane such that

oo

f(x,y)dxdy = 0 (41)

The autocorrelation function for this wavefront is

uOO

f(x,y)f(x - u, y - v)dxdy

We will generally use the normalized form,

oo

K(u,v) =

f(x,y)f(x- u, y - v)dxdy

(42)

and itwill be convenient to convert to polar coordinates for comparison to Schwesinger's results:

27r cO

_0 ! f(p'_)f(O -r'qb-p)pdpd_b_ -

(43)K(r, p) = 21r cO

_0_0 f'(p'qb)pdpd_

Returning to the OPD function, its Fourier transformation is

cO

F(Px, Py) = ff f(x,y) exp [-2_(VxX + pyy)]dxdy (44)

--OO
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From Eqs. 41 and 44 then, it follows that

oo

F(0, 0) = ff f(x, y)dxdy = 0 (45)

The energy density spectrum P(Ux, Vy) is given by

1 _ (46)
P(Vx, Vy) = _ [F(Vx, Vy) l

Thus if f(x, y) = 0, it follows from Eqs. 45 and 46 that P(0, 0) = 0.

Now Lee 9 shows that the energy density spectrum and the autocorrelation function are

Fourier transform pairs,

P(Vx, Vy) = _ K(u, v) exp [-2_(VxU + Vyv)Jdudv (47)

From Eqs. 45, 46, and 47 then, it follows that

oO

1 f_ K(u, v)dudv = 0 (48)P(o, o) =
--oO

or in polar coordinates,

2"/1" oo

_0 f0 K(r,p)rdrdp = 0 (49)

This result is identical to that which Schwesinger (page A-14) attributes to Fried i°,except

in that both have integrated in p to give a zonally averaged autocorrelation function. The important

inference to be drawn from these derivations is that a zero mean OPD function implies that the

integral under the autocorrelation function is also zero. Since all quantities in the integral are

positive except K(r, p), then K(r, p) must have both positive and negative values, and therefore

cannot be represented by a Gausslan function.

E. L. O'Neill (personal communication) has pointed out that there are some classic examples

in communication theory which appear to violate this condition, e.g.,the "random telegraph" signal

in which a signal switches instantaneously from + 1 to -1 at random intervals, with the long term

average being zero. Textbooks Itgive a triangular (all-posltive)autocorrelation function for this

example, and show P(0) to be equal to 1.0. The problem appears to liein the fact that the Fourier

transformation calculations are carried out for the ensemble functions, and not for the function

itself. Ifany finitesection of the random telegraph signal pulse train is itselfautocorrelated, the

autocorrelation function will have both positive and negative values, and the ensemble analysis will

brak down. In fact,we can state the condition more formally: IfT is the total sampling interval
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and tc the correlation interval, then solutions approximating the ensemble average results will be

approached only as T/t c -_ _. Conversely, the statistics break down completely when T/t c -" 1.0.

The wavefront errors introduced by surface irregularities in a telescope mirror are obvi-

ously stationary with time, and ensemble averaging can be approached only by averaging the wave-

front irregularities of a large number of mirrors. The autocorrelation length L is generally a

moderately large fraction of the pupil diameter Dp, Dp/L seldom exceeding 3 to 10 in real tele-

scope mirrors. Because of this, autocorrelation functions generated for individual wavefronts are

likely to depart siguificiantly from any true ensemble averaged autocorrelation function. For such
a bounded waveform, including bounded random telegraph signals, Eq. 48 or 49 should apply. In

fact, deviation of the integral (49) from zero is more likely to be an indication that Dp/L is too

small for the statistical model to work properly.

When dealing with a finite sample of a random wavefront bounded by a circular pupil, some

special considerations enter into the definition of the autocorrelation function. These are illus-

trated in Fig. 4-69, which also defines the coordinates used in Eqs. 42 and 43. The product

f(x, y)f(x - u, y - v) exists only within the shaded region where the pupil and displaced pupil over-

lap. Thus the value of the unmodified autocorrelation function decreases in proportion to the

normalized transmitting area of the pupil as r is increased from 0 to 2R, even in the absence of

wavefront error. We compensate for this by dividing the right side of Eqs. 42 and 43 by the

normalized pupil transmittance. This function is identical to the perfect lens MTF T I, where,

for an unobstructed lens

2 [arc cos sin (arc cos Vn)] (50)
Ti(vn) =_ Vn- vn

vn being the normalized spatial frequency.

At this point, several comments on notation are in order. Schwesinger uses a normalized

form of the displacement radius using R as the normalization factor. Thus 0 _ r _<2.0. In this

report, we use a normalized spatialfrequency _h = v/v0, where v0 ---Dp/)_, Dp being the pupil

diameter. Thus 0 _< Vn _< 1.0. These coordinates are interchangeable, in that numerically, r =

2vn. In the remaining discussion of the autocorrelation function we will refer usually to the

zonally averaged autocorrelation function K(r) = [K(r,p)]p. Note that this is numerically equiva-

lent to using the zonally averaged OPD function f(p) = If(p,qb)]pin Eq. 43.

The compensated form of the autocorrelation function in Schwesinger's notation thus be-

comes

K(r) =

oO

;of(p)f(p - r)pdp

¢o

TI(r/2)f0
f2(p)pdp

(51)

In the notation of Eqs. 1 and 2,
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oO

_0 f(P)f(P- 2_a)PdP

• _(Vn)= _ (52)

Ti(un F(o )0 do

0

In performing the integral of the volume under the autocorrelation function for a bounded

wavefront, Schwesinger introduces a weighting function _)(r) (see Eq. 15, Appendix A). He claims

that the bounded wavefront equivalent to Eq. 49 is

2

°_0 _b(r)K(r)dr = 0

In examining his weighting function _b(r),we have noted that

(53)

(_(2Vn) = 4Ti(vn)V n (54)

Thus, Eq. 53 is equivalent to

_I,ti(un)Ti(vn)undPn = 0 (55)

This is the zed integral discussed in Section 4.1.2. (In the computer calculation, we ignore the

factor 8.)

[It is interesting to compare this equation to Eq. 4-5 of reference 6, which gives the Strehl

definition • for rotationally symmetric MTF's: In the present terminology, using the normalized

spatial frequency,

Tw( Vn)Ti( un) undPn (56)

The similarity is striking,but probably not too significant. The Strehl definitionequals 1.0 for a

perfect lens. Eq. I shows that this can occur ifo_= 0 or if_11(Vn) = 1.0 for all un. In practice,

the latterwill occur only when o_= 0, and may not occur then. Itimplies that the correlation length

Is very long with comparison to the pupil diameter. Note that if4_t1(Pn)= 1.0 for all Pn, Eq. 55

equals 1.0. This is equivalent to the earlier statement that when T/t c - 1.0,the statisticsbreak

down. Thus the zed integral = 0 only ifthe autocorrelation length is a reasonably small fraction

of the pupil diameter.]

Proof of the validityof Eqs. 49 and 55 would constitute evidence that the Gausstan autocorre-

lationfunction is formally unacceptable. There may exist conditions under whlch the Gausslan

autocorreiation function is a satisfactory and useful approximation, however. To examine this
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possibility and to test Eq. 50, we must look at the autocorrelation functions for real mlrrors and

for generated wavefronts.

4.9.2 Autocorrelation Functions for Generated Wavefronts and Real Mirrors

Two forms of generated wavefronts are used in computing autocorrelation functions here,

but both start with a random number table and a smoothing function. One is the rotationally

symmetric wavefront of GASPR, which produces the *Autocorrelation function. The other pro-

duces a wavefront irregularity function varying in two dimensions, defined by a 20- by 20-point

data matrix. This wavefront is autocorrelated by carrying out the integral (Eq. 52). Two ortho-

gonal sections of the two-dimensional autocorrelation function are calculated by displacing the

data matrix incrementally in the x and y directions. The model wavefront is then rotated 15

degrees with respect to the data point matrix, and the process is repeated. When a complete set

of profiler spaced by 15 degrees has been obtained, they are averaged by hand. The same tech-

nique was used in reference 6 to obtain autocorrelation functions for real mirrors; this will be
shown below.

Since we will compare these autocorrelation functions to the Gausstan autocorrelatton func-

tion, we should cite the Gaussian autocorrelation function forms used in our principal references:

• _l(rn) = exp (-2NH2Pn2) (reference 8)

K(r) = exp (-r2/_ 2) (Schwesinger)

(57)

(58)

_btt(Vn) = exp (-4Vn 2 c 2) (GASPR notation) (59)

and c are the normalized autocorrelation lengths in each notation, and they are numerically

equal,

c = _ = I/(_- _vH) (so)

The normalized autocorrelation lengths are so defined that when r = _ or z,n = c/2, the autoeorre-

latlon function = 1/e = 0.3679.

Fig. 4-70 shows five autocorrelation functions for five two-dimensional wavefronts of corre-

lation length c = 0.3, each generated from the random numbers table starting with the same seed.

Each curve represents the average of a two-dimensional autocorrelation function. To indicate the

degree by which the latter varies from its mean , we have plotted the standard deviation curve for

each case in Fig. 4-71, along with an average of the five standard deviation curves. In Fig. 4-72,

the average of the five autocorrelation curves is plotted with its standard deviation curve. The

corresponding Gaussian autocorrelation curve for c = 0.30 is included for comparison.

Three conclusions can be drawn from this data: First, the variance within the individual

autocorrelation function is considerable, as is the variance between different wavefronts which

nominally have the same statistics. Second, all cases show both positive and negative values,

although averaging ove_ many cases seems to reduce the maximum negative excursion of the curve

somewhat. Third, the Gausslan model seems to match the shape of the lowest frequency portion

of the real autocorrelation function. This latter can be attributed in part to the absence of high

spatial frequency components in the wavefront model.

In Fig. 4-73 we show autocorrelation functions for three different correlation lengths, each

the average of three two-dimensional functions. The same three seeds were used in generating

each set of wavefronts. Again, note that the lower spatial frequency portions of the curves look

Gaussian in shape. (This is not too apparent for c = 0.1, where the 0.05 spatial frequency sampling
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increment is too coarse to resolve details.) The most significant thing to note is the manner in

which the magnitude of the negative excursion varies with correlation length. If Schwesinger's

form of the zed integral is considered along with the shape of his weighting function _(r) (Appendix

A, Fig. 3), it will be seen that the autocorrelation function must vary with correlation length in

this manner if the zed integral is to equal zero.
/

The zed integrals for these three autocorrelation functions and the corresponding Gaussian

autocorrelation functions are given in Table 4-15, along with the zed integrals for the nine two-

dimensional autocorrelation functions used to generate the averaged curves. Several conclusions

can be drawn from this data: First, the value of the zed integral decreases as c decreases. Below

c = 0.3, however, this variation with c seems to be of a magnitude comparable to the variance be-

tween different individual samples. Second, the zed integral for the Gausstan autocorrelation

function is much larger than that for the real autocorrelation functions. It too decreases as c

decreases, and it is evident that at some point c < 0.1, it will be reduced to within the statistical

variance between real samples.

To examine the effects of higher frequency components, we must use the *Autocorrelation

function output of GASPR. Fig. 4-74 shows the *Autocorrelatton functions for five wavefronts

generated with the random wavefront option, all having a correlation length of 0.1 and a square

smoothing function, but each being generated with a different seed. The average of the five *Auto-
correlation functions and its standard deviation are shown in Fig. 4-75, along with the correspond-

ing Gausstan autocorrelation function.

Table 4-15 -- Zed Integrals (Eq. 49) for the Two-Dimensional Autocorrelation

Functions Used in Generating Fig. 4-73 (Zeal integrals for the corresponding

Gausstan autocorrelatton functions are included for comparison)

c 1 2 3 Average Gausstan

0.6 0.0584 0_064 0.0104 0.0256 0.2392

0.3* 0.0096 -0.0008 0.0064 0.0056 0.0728

0.1 -0.0024 0.0052 0.0109 0.0040 0.0072

*Averaged over the five samples in Fig. 4-70, zed = 0.012.

This averaged *Autocorrelation function bears similarities to the corresponding two-

dimensional averaged autocorrelation functions. It has both positive and negative values, and it

tends to oscillate about zero at higher spatial frequencies. The calculations were made for w =

0.10 wavelength rms, which introduces some errors at higher spatial frequencies. (Among other

things, this drives the zed integral negative. Zed = -0.0236 for the averaged curve.) The most

significant difference from the previous examples is at low spatial frequencies, where the *Auto-

correlation function drops off considerably more rapidly than the Gaussian curve. That this is due

to the presence of higher spatial frequency components is borne out by the results discussed in

Section 4.4.

What of real mirrors? Figs. 4-76 and 4-77 show two examples taken from reference 6.

Three more examples are shown in Fig. 2 of Appendix A. All five show the autocorrelation func-

tion to have both positive and negative values, and to oscillate about zero at high spatial frequen-

cies. [Note that the autocorrelation function has been multiplied by TI(P n) to damp down these

oscillations in Figs. 4-76 and 4-77.] Note that at low spatial frequencies most of these curves

fall off more rapidly than Gaussian, in spite of having been measured with a relatively coarse

sampling point spacing. This behavior is also apparent in the *Autocorrelation functions for the

A.A.T. primary mirror (Section 4.7.3), particularly in the case of radius 5A.
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_Ve will show in Section 5 that the autocorrelation functions for surface microstructure are

also significantly non-Gaussian in character.

4.9.3 Deviations From Rotational Symmetry

The wavefront irregularity function of any real telescope will deviate from rotational sym-

metry. This is clearly evident from the A_.T. primary mirror wavefront profiles, and is further
shown in the above discussion of the autocorrelation function. The question of the magnitude of

variance to be expected between the rotationally symmetric statistical models and real system

performance is being pursued by several workers. Barakat has published papers _,13 dealing with

the question, although not in terms readily applied to the present effort. E. O'Neill and others

(personal conversations) are actively pursuing the topic at various levels of effort, but have not

published results as yet. The most interesting and relevant recent paper is by D. Nicholson t4,
which shows variance in the MTF for lens models with two-dimensionally random wavefront

errors generated in a manner similar to that used in studying autocorrelation functions here.

Threeof his figures are reproduced in Fig. 4-78.

Performing variance analyses on the autocorrelation function and MTF is fairly straight-

forward. Extending this effort to the PSF is more difficult, and has not been done as yet. Hope-

fully, development of a valid autocorrelation function model including the effects of ripple will

help in this direction. The variance analysis of Nicholson uses a low spatial frequency bandpass

model of the wavefront, and therefore cannot deal with effects on any part of the PSF beyond the

first few rings. There has not been time to try any similar analysis using the rotationally sym-

metric GASPR model, and applying the results of analyses of multiple rotationally symmetric
wavefronts to variations from rotational symmetry is questionable. It is probable that any study

of asymmetric effects in scatter due to ripple will have to be done experimentally.
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5. WIDE ANGLE SCATTERING ANALYSIS

Theoretical and experimental analyses of scattering from surfaces have been performed

by a great number of workers studying different regions of the electromagnetic spectrum. Wave-

lengths studied have ranged from microwaves to x rays. The surfaces involved have included not

only man-made surfaces, but also the ionosphere, the surface of the ocean, and the surface of the

ground. The most prevalent theoretical models derive from radar studies involving the latter

three surface types.

Relatively little of the past work has dealt specifically with scatter from highly polished

optical surfaces. Recently, however, the needs of space borne astronomy and high energy laser

systems have generated interest in such scattering. Until quite recently, workers studying optical

surface scattering have adopted the theoretical models developed for radar scattering to explain

optical scattering. But these theoretical models face the same problem discussed in Section 4.9:

the surface irregularities are assumed to have a Gaussian autocorrelation function. Since this

is in fact not the case, the experimental fact_do not agree well with the theory. This fact has

been disguised in part by the narrow range of angles over which optical scatter is typically
measured. The theoretical model might provide a rough fit over, for example, 5 to 20 degrees.

Most experimental measurements have tended to concentrate in this range, since experimental

difficulties are encountered at smaller angles, and larger angles are frequently not of great

interest. More recent measurements extend over a great enough range of angles to show up the

errors in the theory. Direct measurements of the autocorrelation function confirm this.

In this section of the report, we will concentrate almost entirely on the more recent experi-

mental results, and on empirical models used to represent them. A brief review of the older

theory based on a Gaussian autocorrelation function will be given for purposes of comparison.

The two principal sources of direct scatter measurements we will use are the star profiles

calculated by Ivan King 15 and John Kormendy 16, and the scatter coefficient measurements of

Roland Shack and Micheal DeBel117. Other data will be referenced as cited. We will develop

a scatter coefficient model based on the Arizona data and use it to generate a star profile model.

This latter will be compared to the King/Kormendy data and will be used as the basis of a computer

program to calculate the contribution to the background image irradiance of scattered starlight.

Some results of analyses with that program will be included.

5.1 BECKMANN MODEL FOR SURFACE SCATTERING

Perhaps the most widely used models for scattering from surfaces are those of Peter

Beckmann.18, 19 Beckmann generally treats the surface as a perfect conductor with surface

irregularities which can impose phase errors on wavefronts reflected from it. The surface can

then be treated as a spectrum of phase gratings, and the scattered light as a spectrum of plane

waves diffracted by them. Beckmann describes_ a number of models for the phase gratings, includ-

ing one random model based on Gaussian Statistics using a Gaussian autocorrelation function.

We will examine this model, using the formulation of Smith and Hering. 2°

S
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Smith and Hering define a bidirectional reflection coefficient which describes both the

specular and diffuse reflectivity of the surface.

fbd(8', _b'; 8, _) : fsp(8')U(e', _'; 8, _b) + fsc(8', _'; 0, ¢) (61)

where 8', _' : direction of incident ray in polar and azimuth angles

8, ¢ = direction of reflected "ray"

fbd( ) : total bidirectional reflectance

fsp(8') = specular component
fsc( ) scatter component

U( ) = 1.0 in specular direction and 0 in all other directions.

The specular component is given by

fsp(8') = exp {-[4_(aA) cos 8'] 2} (62)

where _ = the rms height of the surface irregularity on the mirror (not on the wavefront).

The diffuse component is given by

2 (a/X)2Bexp{- 2}
fsc(8', _'; 8, _) = ms cos 8 cos 8'

L--

g

m

L--

I

J

U

m

U

O0 J

TM (63)X

M(M!) exp [ M m s J

M=I

where m = rms slope = _-2(a/a)

a = correlation length

1 + cos 8cos 8' +sinSsinS'cos (_'- _) 2
B=

COS 8 + COS 8'

E = 2_(cos 8 + cos 8')

H =sin s 8 + sin 2 8' +2sinSsinS'cos (¢'- _b)

For normal incidence, B = 1.0, E = 2_(1 + cos 8), and H = sin 2 8.

fsp(0) = exp[-4_(_/_) 2]

fsc(O) 2_(_A) 2 ex-p {-[2r'(o/_.)(1 + cos 8)] 'z}
= m 2 COS O

oO

Eqs. 62 and 63 reduce to

m

g

z
=

J

7

g

J

U

× _ M(M[)

and

M=I

[2_(_A) (I + cos 8)]TM

(64)

(65)
/_[2_ 2 (cY/X)2sin2exp M m s O] }
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Note that Eq. 64 is one form of approximation for calculating the Strehl definition (see reference

6, page 4-3).

Eq. 65 has been used to compute the scatter coefficients for the case _ = 20 ]kngstroms and

a = X/2, X, 2k, and 4k. The results are shown in Fig. 5-I, which plots the log of fsc(0) versus

log sin (0). Note that all four curves have the same general form, a long flat portion at small

angles, plus a strong roll-off at large angles. Changing the correlation length a increases the

scatter coefficient at small angles and shifts the shoulder of the curve toward smaller angles.

It is generally assumed that the correlation length for polished mirror surfaces is in the

region of one wavelength. Since such mirrors tend to have scatter coefficients which vary as the

inverse square of sin 8 in the vicinity of 5 to 10 degrees, than in the absence of measurements

outside this range of angles, the Beckmann theory seems to fit the data if a = 1 to 2 wavelengths.

In Fig. 5-I, we have added two curves taken from the next section of this report. Although

neither represent scatter measurements over the entire range of angles plotted, each implies

that the other can be extrapolated as shown. Neither of these curves can be fit by Eq. 65 for any
combination of _ or a. We must therefore assume the Beckmann theory to be inapplicable to

scattering from well polished mirrors.

5.2 DATA FROM THE LITERATURE

There is very extensive literature on scattering theory and scatter measurements. Most

of it is irrelevant to our purposes and will not be cited. Rather, we will cite only that data which

applies to the topics under discussion. This will fall into three categories: first, the King/

Kormendy star image profiles, which are unique in giving the effective point spread function

for a complete system from the center of the image out to 5 degrees; second, direct measure-

ments of scattering at angles greater than about 1 degree; third, measurements of surface

irregularity and its statistics.

5.2.1 King and Kormendy Star Profile

In 1971, King t5 published the composite profile of a star image shown in Fig. 5-2. This

was taken from microdensitometric tracings of star images on film from a number of separate

telescopes, including the 60-inch Cassegrain at Mount Wilson and the 48-inch Schmidt telescope
at Mount Palomar. The curves cover data from substantially less than one arc-second to about

5 degrees. The ordinate is surface brightness or effective radiance in magnitudes per square

arc-second for a zero magnitude star.

Two aspects of the data are particularly interesting: first, an extensive section of the

profile follows an inverse square dependency on angular radius; second, the data from a number

of different instruments of different design and different aperture diameter follow roughly the

same star profile. The inverse square characteristic eliminates diffraction at the pupil from

consideration as the source of the profile, since diffraction at a circular aperture has an inverse

cube dependancy on angular radius. The fact that the same curve applies to a number of different

telescopes indicates that design type and aperture diameter are of secondary importance in

defining the star profile.

King made no significant attempt to define the source of this shape, and this is indeed a

difficult problem. The complete system involves transmission through the turbulent atmosphere,

diffraction by the telescope aperture, scatter at several optical surfaces, and scatter within the
film emulsion. The shoulder toward the center of the curve is without doubt due to atmospheric

turbulence, but beyond that, explanations are speculative.

Kormendy _6 did a far more detailed analysis of the star image profile for the 48-inch

Schmidt telescope at Mount Palomar, with the intent of providing a radiometric calibration for

the telescope. His data, shown in Fig. 5-3, plots surface brightness in magnitudes per square
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arc-second against the log of the image radius in arc-minutes. The dashed line is from King's

dab% and the solid line is Kormendy's new curve. There are two anomalies in the latter,one

due to a ghost image produced by the Schmidt plate, and the second (at 1 arc-minute) a ghost

imag e produced by a filterin front of the Photographic plate. Kormendy's data agrees well with

King's data at smaller angles, but shows a lower slope at large angles.

Kormendy makes a more detailed attempt at explaining the shape of the curve. He dismisses

diffraction at the aperture as a possible cause, indicating that it will be well below the plotted

curves. Scattering in the emulsion of the photographic plate may account for the change in slope

inside of 20 arc-seconds, but cannot explain the power-law part of the curve. He also gives

reasons for dismissing scattering from atmospheric haze. This leaves scattering from optical

surface irregularities and dust in the telescope as the most probable cause. We will return to

considering this possibility aRer we have generated a star profile model based on mirror surface

scattering.

5.2.2 University of Arizona Scatter Measurements

The data published in reference 17 represents perhaps the most comprehensive attempt

to measure scatter from mirror surfaces of differing roughnesses that is presently available.

Measurements were made on a number of different samples of glass and fused silica polished

by a number of different techniques. Surface finish ranged from ground glass to superpolish.

Scatter angle (normal incidence) ranged from roughly 2 degrees out to nearly 90 degrees. (There

is some question about the validity of the data below 5 degrees, however, due to some extraneous

background contribution.)

Fig. 5-4 is typical of the output of these measurements. The uppermost curves are for

ground glass samples. The remaining five curves are for glass and fused silica samples of

different surface roughness. Table 5-1 summarizes some of the data about them, including

surface roughnesses and scatter coefficient ps(a) for a = 5.74 ° (sin a = 0.10). It should be noted
that the surface roughness was estimated visually from FECO interferograms and its accuracy

is highly suspect. Note also that this data is for the roughness of the wavefront, not the mirror
surface.

This data is used as the basis for the scatter coefficient model developed in Section 5.3,

which follows a suggestion on page 30 of reference 17. This data will be discussed further at

that time.

Table 5-1 -- Scatter Data from University of

Arizona Measurements (Reference 17)

Sample _w(_) w = _w/X ps(al)*

EDF 3-11 150 0.0292 1.43 x 10 -2

222 120 0.0233 1.22 × 10 -3

EDF 3-4 25 0.0049 8.42 x 10 -4

247 40 0.0078 8.42 x 10 -4

236 10 0.0019 1.75 x 10 -4

*sin a I = 0.I0

_-i = 514.5 nm

5.2.3 Michelson Laboratory Data

Bennett's group at Michelson Laboratory, Naval Weapons Center, China Lake, California

is one of the most active in studying scattering from mirrors. Although much of their early work

tended to be involved with variation in specular reflectivity with roughness 21 or total scatter,
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some of their recent work is of more direct interest to this study. In particular, they have

developed a FECO interferometer which they have used to measure the surface microstructure

of mirrors, from which they have computed the statistical characteristics of the surface irregu-

larities.23, 24 Figs. 5-5 to 5-8 represent data taken from these measurements. The important

points to note from this data are that both height and slope data are Gaussian, while the auto-
correlation function is non-Gaussian. These examples are typical of their other data as well

(see references 23 and 24).

It is interesting to compare the autocorrelation function in Fig. 5-5 to Fig. 4-29c. They

are rather similar, particularly in terms of their behavior near the origin. In this region,

Bennett's data tends to fit a linear exponential curve, although that fit breaks down where the

autocorrelation function goes negative. These autocorrelation functions are probably indicative

of a very broad spatial frequency distribution in the surface irregularities.

Work is continuing at Michelson Laboratory to attempt to fit a scatter function to this auto-

correlation function. No satisfactory solution has been found as of this writing (personal com-

munication from J. Bennett).

5.2.4 Other Data Sources

Three other data sources are worth noting. Smith and Hering 2° also measured surface

irregularities and computed the associated autocorrelation functions, with results similar to

Jean Bennett's data given above. Their measurements were made mechanically, with a stylus,

and therefore are of comparatively poor lateral resolution. Jay Eastman 2s has made measure-

ments of surface roughness with a scanning Fizean interferometer. He shows the surface irregu-
larities to have an autocorrelation function which is approximately a linear exponential (see

Fig. 5-9). It should be noted that no attempt was made to define the correct zero height for this

function. The fact that C(s) in Fig. 5-9 is all positive is an artifact of the normalization technique.

Eastman's work is worth noting here primarily because of his development of scanning Fizeau

interferometer, which is competitive in performance to the FECO interferometer. (See Section

7.2 and Appendix B for further discussion.)

The third data source of interest is a recent paper by Heinisch 2_, which discusses the effects

of dust and surface contaminants on the bidirectional reflectivity of mirrors. His measurements

are made at 10.6 micrometers, but the results are indicative of what can be expected at different

wavelengths. Fig. 5-10 reproduces his principal figure. Replotting the lower two curves in log-

log coordinates shows them to have straight sections varying in slope from about 1.6 to 2.8,
which is within the range indicated by Arizona data. The accumulated dust raises the scatter

level roughly 50 times and changes the slope of the scatter curve. Removing the dust restores

the original level of scatter almost completely.

5.3 SCATTER COEFFICIENT MODEL BASED ON EMPIRICAL DATA

The data on star profiles from King and Kormendy and the data from mirror scatter measure-

ments from the University of Arizona suggest that the scatter coefficient follows an inverse power

law over a considerable range of scatter angles. Thus a model using an inverse power law seems

reasonable. There are two endpoint conditions which deviate from this law, however. At 90

degrees, the scatter coefficient must go to zero via a cosine roll-off. Also, the inverse power

law cannot hold at zero scatter angle where it would be infinite. Thus a small angle roll-off is

also required. The complete model should have the general form shown in Fig. 5-11 when plotted

on log-log paper. This curve can be represented by an equation of the form

C 1 cos ol

Ps(_) = (1 + C2 sin 2 a) s/2
(66)
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The units of ps(e) are steradlans -1. Light is assumed to be normally incident. (Note: This model
is drawn from reference 17, page 30, equation 67.)

C1 represents the value of the scatter coefficient at very small angles, a << a0- Cs is the

constant defining where small angle roll-off occurs. Numerically, Cs = 1/sin 2 a0, where e0 is

the angle at which the asymptotes to the two straight-line portions of the curve cross. We might

therefore rewrite Eq. 66 as

Ct sins _o cos f_ (67)
Ps('_) = (sins "o + sin2 a)s/s

In general, we will not be able to determine Ct or f_0 very readily. In later analyses, we will

assume a value for fv0, generally an angle smaller than any we will use in practice. But if we

have one measured value of the scatter coefficient, p s(fVl, _), measured at angle el >> _0 and

wavelength _, and if we know the slope s, then we can say that

C1 sinS °to = Ps(_t, _) sinS al/cos fvl (68)

Thus

ps(_ ) = PS((_,, _) sins _i cos (_
cos vtt (sin2 ot0 + sin2 o_)s/s

(69)

In Section 4.2.4, we discussed how changing wavelengths changed the scatter function due

to a spectrum of small phase amplitude phase gratings. The change in scatter was due to two

effects, increase in the effective phase amplitude and decrease in the scatter angle for a given

spatial frequency phase grating, as wavelength decreases. The net result was the (4-s) scaling

law of Eq. 35.

Now consider how these arguments apply to the scatter function model represented by

Fig. 5-11. First, as wavelength decreases, points in the straight-line portions should scale

upward according to Eq. 35. Second, as wavelength decreases, a0 will become smaller. Thus

if we wish to know ps(a, k) when we have measured data for ps(al, _l), we should rewrite Eq. 69

as:

(x/h)(s-')ps(a_,h) sins _, cos a
ps(a,x)= cosa,[(x/h)_a01+ sinsa]s/2

(70)

We have written ot0i to indicate that this is the roll-off angle at x I.

It should be emphasized that these wavelength scaling rules are tied to the assumption that

the phase amplitudes of the wavefront irregularities remain small through the wavelength region,

and to the assumption that the features of the scatter function (slope of the straight-line portions

and the small angle roll-off) are a result of the spatial frequency distribution of the wavefront

surface irregularities. If the phase amplitudes of the surface irregularities become too large,

these assumptions break down due to interactions between different spatial frequency components.

The one-to-one relationship between spatial frequency components of the wavefront irregularity

function and features of the scatter function break down when sum and differencing of components

occurs, and when significant higher order teams show up. (See Figs. 4-56 through 4-59, Section

4.7.4, for examples). Thus, care should be taken in using this equation to scale scatter functions
into the far ultraviolet. If the total scattered light is more that a few percent of the light in the

point source image, these equations probably do not hold.
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Eq. 70 has been used to compute the curves in Figs. 5-12 and 5-13. Fig. 5-12 shows how

the choice of roll-off angle affects the scatter function curve. This has obvious implications

concerning total scattered light and will be dealt with below. Fig. 5-13 shows how slope s will

affect scaling of the scatter function with wavelength. The constants for the three different

scatter functions were selected to make them all equal at sin otl = 0.10 and h1 = 0.60 micrometers.

It will be seen from the way the position of the intersection point for the three curves shiRs that

the scaling consists of shifting the curves left a distance log (_2/_) and upward a distance log

(kl/_2) 4. This follows directly from the change in scatter angle and phase amplitude for each

spatial frequency component of the wavefront irregularity function with the consequent scattering

of more light into a smaller solid angle, as discussed in Section 4.2.4. At any given scatter

angle, however, we see that wavelength scaling is strongly dependant on the scatter function slope

s, with the change being greatest for the smallest slope.

It is interesting to apply the two wavelength scaling rules of the above paragraph to the

infrared data from Heinisch 26. To match the University of Arizona data 17, we must scale from

10.6 micrometers to 0.5145 micrometer. The data is shifted left in angle space by the scale

factor (0.5145/10.6) = 0.0485, and 1 ° becomes 2' 54". (This is a roundabout method for measuring
small angle scattering.) The scatter coefficient is scaled upward by a factor (10.6/0.5145) 4 =

1.80 x 105. The results of this scaling are shown in Fig. 5-14 with some of the University of

Arizona data for comparison. A scatter function curve from Eq. 70 has been added. This was

given a slope of 2 and fit roughly to the scaled Heinisch data.

The mirror measured by Heinisch is described as a '"nigh quality, low scatter electroless

nickel coated aluminum mirror," but no data is given as to the rms deviation of its surface irregu-

larities. Therefore, the most we can say from Fig. 5-14 is that the scaled infrared scatter

coefficients are consistent with the University of Arizona data and the scatter function model

Eq. 70. This consistency is maintained over assumed slopes ranging from about 1.7 to 2.0, with

a slope of 1.8 matching the Heinisch data to sample no. 247.

Eq. 70 is the complete statement of the scatter function model we will use in analyzing wide

angle scattering. In most of the actual analysis, we will use somewhat simplified forms of the

model for convenience. We will generally assume that s = 2, except when specifically examining

the effects of slope variation, as in Fig. 5-13. In some of the star profile calculations below we

ignore the wavelength scaling of ot0 as well.

If we assume that s = 2, Eq. 66 becomes

P s (ot) = Cl cos a/(1 + C 2 sin2a) (71)

We wish to integrate Eq. 71 to determine the total scattered light (TSL) due to the wavefront

surface irregularities. Normalizing the integral to give TSL = 1.0 for a perfect Lambertian

reflector, for which p scot) = (cos ot)/Tr, we obtain

_-2

TSL = _ Ci

ot cos u dot

(i + C2sin 2 ot)
(72)

Eq. 72 is not an easy integral to solve analytically, but if two simplifications are made,

an approximate solution can be found. First, we use the asymptotic form of the scatter function:

Ps(_) = Cl cos _, _ -<ot0

_ C 1 cos ot
ot > a o (73)

- C2sin 2 ot '

5-17



f

i0 io

(degrees, minutes, seconds)

I0" I' 10' i° 10° 90°
I

i

m

J

!

v

C_

10 8

10 8

10 4

10 2

10 -2

10 -4

10-8

10 -8

10 -8

\

Sin c_o =

10 -4

10 -2
i

\

10-8 10-5 10-4 10 -3

ps(el, Xl)= 0.001
Sin _i = 0.I0

X= X I

S=2

\

\
\

0 -2 I0 -i 1

Sin c_

Fig. 5-12 -- Variation of p s(CX) with roll-off angle

m

N

i

=_

I

i

i

m

m

u

i

m
w

i

m
m

5-18
m

u



i

L

!

cd
,y=d

cd

v

v
b_

_t

10 lo

0102 _01

I I
S = 2.5 Ps(Otl, _1) = 0.001

S = 2.0 Sin oq = 0.10

106 _ )_I= 0.60 /_m

1o'"_=2.5 -- I _ _

_o___-__ _._"

1

10 -4 ,_'_

10-_

10-_

lO-ln
10-_ IO-G 10 -_ 10-_ 0-._ 10-2 10-_

Sin c_

Fig. 5-13 _ Variation of ps(a) with wavelength and slope s

5-19



U

m

v

10 z

10

I0 -1

10 -2

10-s

10 -4

10 -5

10-6

10 -7

1

!

\

c_(degrees, minutes)

I0' 30' I°
I q t

Heinlsch data scaled to 514.5 nm

5o I07 30 °
I I I

\

Eq. 70

-- p s(al, )_1)= 0.000562 -

Sin al = 0.I0

k, kl = 514.5 nm

__ C_OI = 10 -6

s = 2.0

c 1 = 5.65 x 10 e

c 2= 1.00x101:
-- TSL = 0.000464

w = 0.0034

= 17.6 h

10-3

From U. of A. data,
= 514.5 nm

%%

No. EDF-II

'_%%%

%%%•

._ No. 247

_x,_ No. 236_

Heiniseh data _

at 10.6 #m

0 -2 I0-t 1

S_.n ot

Fig. 5-14 -- Heinlsch infrared data 28 scaled to 514.5 nm and compared to

University of Arizona data 17

I

M

Jim

i

i

i

I

i

i

I

L_
=:=
l

a

I

i

H

5-20
I



r

L

w

Second, we transform the notation, setting x = sin _, and x 1 = sin ot 0. The integral can then be

rewritten

TSL =
_-2 C2

x 2 1

C2/ arc sinx_ +/

Jo xl

arc sin x dx

x 2
(74)

from which we get

2_Ct [2vr'C_-2arc sin (1/_FC-22) + v_2 ¢-C-_-1 - c2
TSL = (_-2)C2

In general, C 2

ln[(C-_2 cC_-12-1]
+_+ +

>>> 1. Therefore, Eq. 75 can be simplified to read

_CL-- [4 - _ + ln(4C2) ].
TSL = (__2)C 2

(75)

(76)

If we wish to rewrite this in the manner of Eq. 70, remembering that we have set s = 2,

_(X1/k)2ps(_l_ _sin2 °it {4 - _ + 21n[2(_/X)]- 21n(sin ot_l) }
TSL = (_-2) cos otI

(77)

Eq. 77 can be used to study the effects of varying wavelength and roll-off angle on the total

scattered light. Fig. 5-12 implies that a small roll-off angle will substantially increase the

amount of light scattered into the forward hemisphere by the corresponding mirror. Table 5-2

gives numerical data to demonstrate this, _C_hanging the roll-off angle from half a degree to
0.02 arc-second increases total scatter by a factor of 3. (The latter angle corresponds roughly

to the middle-ultraviolet Airy disk radius for the large space telescope.) Thus the difference

between this model for the scatter function and the Beckmann model can have real physical

significance.

Table 5-3 gives the total scattered light for some of the samples run by the University of

Arizona 17 for the test wavelength, and for ultraviolet wavelengths of interest to the LST program.

A scatter function curve we fit to the square-law portion of the King-Kormendy (K-K) star profiles

is also included. The variation of the total scattered light with wavelength and surface roughness

is pretty much as expected. Note that the integrated scatter for the K-K example goes above 1.0

at 121.5 nanometers, indicating that the roll-off angle is too small for that case. In fact, it is

probable that this scatter function model is significantly erroneous at any wavelength shorter

than 325 nanometers for this example, even neglecting that the original telescope from which the

data was taken has a refracting corrector plate and may not transmit light of those wavelengths.

The total scattered light is related to the rms wavefront error for the wavefront by the

equation

TSL = 1 - exp [-(2_¢o) 2] (78)

for small wavefront errors. (The more commonly seen form uses the first term in the series

expansion of the exponential.) We can thus estimate the rms wavefront error by inverting Eq. 78

5-21



It is interesting to use Eqs. 78 and _7 to examine how the rms wavefront error varies with wave-

length. In particular, it is interesting to see how the rms wavefront deviation _w = wk varies with

wavelength_ as is shown in Table 5-4.

These results might be dismissed as anomalous, since one normally assumes that the

surface irregularities are independant of wavelength. There is a physical explanation, however.

The finest detail which can be resolved on the mirror surface is limited by the wavelength of the

reflected light. Thus reducing the wavelength allows finer structure to affect the scattering

function, i.e., the spatial frequency bandpass is increased. This will increase the rms deviation.

Table 5-2--Variation of Total Scattered Light With Roll-Off

Angle, a0[ps(_ 1) = 0.085; sin _l = 0.10; ;_/_ = 1.0]

Sin _ 01 a 01 TSL Multiplier

10 -2 34' 23" 0.02693 1.000x

10 .3 3' 26" 0.03776 1.402 x

10 -4 21" 0.04858 1.804x

10 -5 2.1" 0.05941 2.206x

10 -6 0.21" 0.07024 2.608 x

10 -7 0.021" 0.08106 3.010x

Table 5-3 m Variation of Total Scattered Light With Wavelength

and Surface Roughness (sin _01 = 10-6;

sin al = 0.10; _ = 514.5 nm)

Sample 236* 247* EDF 3-11"

p s(at, _) 0.00018 0.00084 0.0143

Wavelength, nm

514.5 0.000145 0.000694 0.0118

325.0 0.000374 0.001793 0.0305

121.5 0.007843 0.0136 0.232

* From University of Arizona data (reference 17).

t FiRed to inverse square curve of King-Kormendy data.

K-Kt

0.085

0.0702

0.181

Table 5-4 -- Variation of RMS Deviation of Wavefront, aw,

With Wavelength (same cases as in Table 5-3.)

Sample 236 247 EDF 3-11 K-K

Wavelength, nm

514.5 g.84 21.6 89.3 221.0"

325.0 10.0 21.9 91.1 231.4"
121.5 10.3 22.7 99.4

* Effective value, since scarer comes from several surfaces in

series, plus dust, etc.

An increase in effective rms deviation due to an increase in the spatial frequency bandpass

because of wavelength change is hard to detect with present measurement techniques. Integrated

scarer is seldom measured over a full hemisphere from 0 to 90 degrees. Those portions of the
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scattered light falling inside 1 degree are seldom considered, and as we have shown, they are

of considerable significance in this model. Also, measurements of rms deviation in mirror

surfaces are usually done over a very restricted spatial frequency range, due to instrumentation

limitations. Even then, measurements are usually made at only one wavelength; so any variation

in spatial frequency bandpass of the instrumentation would not be considered.

5.4 IMAGE IRRADIANCE DUE TO SCATTERING

Use of the scatter coefficient p s(a) allows calculation of the image irradiance due to

scattering of light from a point source in a very simple manner. Consider, for example, a

parabolic mirror with a point source on its optical axis. Rays from the point source lie parallel

to the optic axis, and are focused at the center point of the image plane. Any image point a
distance h' from the center point is associated with object angle a. A pair of rays traced from

any point on the mirror to the point source image and the point at h' will be separated by the

angle a. Therefore, a can be identified with the scatter angle, above. Thus, if E a is the aperture

irradiance due to light from the point source, then the mirror will appear to have a radiance (L_)

at all points in the mirror, as seen from h', which is given by

L(_) = p s(t_) E a (79)

If F is the focal ratio of the parabola, the image irradiance E i at h' is given by

Ei(ot ) = _L(_)/4F 2 = _p s(a) Ea/4F 2 (80)

Now consider the Cassegrain telescope shown in Fig. 5-15 and again assume the point

source is on axis. We will also assume that both mirrors have the same specular reflectivity

p and the same scatter function, i.e., Ps(fl) = Ps (_) when _ = a. Scattering from the primary

mirror will follow the same relationship as for the parabola above, except that the scattered

light reflects off the secondary before it reaches the image. Thus the contribution from the

primary mirror to the irradiance at h', Eip(_), will be given by

Eip(_) = _rpp s(a)Ea/4F 2 (81)

The contribution from the secondary mirror is

Eis(fl) : _ps(_)Eb/4F 2

(We are ignoring the effects of the central obstruction to simplify the equations.)

Simple geometry tells us that

(82)

E b = p (Dp/Ds)2Ea (83)

and the optical invariant tells us that

sin fl = (Dp/D s) sin a
(84)

We will use Eq. 67 to define the scatter coefficient, and make the following simplifying assump-

tions:

cos _ -_ cos a _- 1.0
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From this, it follows that the scattered light contribution from the secondary is

___.

L

Eis(Ot ) = _pp s(ot)ER(Dp/Ds)¢2-s)/4F 2 (85)

Note that this differs from Eq. 80 only in the term (D /D )2-s, and that if s = 2, the con-
p s

tributions from the two mirrors are identical. We can generalize this by saying that in an n

mirror optical system, if the slope of the scatter function is 2, then

Ei(a) = _np n-lp s(a)Ea/4F 2 (86)

If the slope s differs from 2, then the relative scatter contribution in an n mirror train depends

upon the axial beam diameter at each mirror. If s > 2, the largest aperture mirrors will dominate,

and if s < 2, the smallest will dominate.

5.5 STARLIGHT SCATTERED FROM THE PRIMARY MIRROR

One problem of special concern to astronomers is the degree to which scattered light will

raise the background image irradiance. Although the actual field of view of the LST will be fairly

small, less than 1 degree including the tracking field, the primary mirror will be illuminated by

a much larger portion of the sky. Light from stars well outside the nominal field of view will

therefore be scattered and diffracted into the field of view. The question is, will this scattered

starlight add enough light to raise the effective background significantly above that due to zodiacal

light and unresolved stars ?

We will use a very elementary model for estimating the contribution of scattered starlight

to the effective sky background. We can build a model for a star image profile similar to those

of King and Kormendy using diffraction theory and the scatter model described above. Allen 27

provides tables of star densities according to magnitude and position in the sky. If we assume

these stars are distributed on a uniform rectangular grid, we can add their star profiles at a

given point to determine the effective background radiance they generate. Star profiles outside

the nominal field of view can be multiplied by a vignetting factor to account for shading of the

primary mirror by the telescope tube.

We have developed a computer program to do this calculation. It will be described below

along with some results computed with it. A copy of this program and a user's manual are being

supplied separately. First, we will develop the star profile model and compare it to the King and

Kormendy models.

5.5.1 Star Profile Model

If the aperture irradiance from a star on the optical axis of the telescope is Ea, then

diffraction theory tells us that the image irradiance at the center of the Airy disk in a perfect

lens is

Eip(O) = g2"rDp2Ea/16_2 F2 (87)

_- being the optical system transmittance, including central obstruction. (We will ignore the image

spread due to the central obstruction.) An object of uniform radiance L will give an image Jr-

radiance

E i = nvL/Z4F 2 (88)

By combining Eqs. 87 and 88, we can define an effective sky background radiance Lb(O) corres-

ponding to the center of the Airy disk:

= :
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Lb(O)=_Dp2Ea/4A2. (89)

In reference 6, we defined conversion constants between E a and its source star magnitude

my, and between Mv magnitudes per square arc-second and L,

E a = 2.65 x I0 -c6 + °'4mv_ lumens/meter 2 (90)

L b = 1.13 x I0 (s- °'4Mv_ lumens/meter2-steradian (91)

If these terms are substituted into Eq. 89, the following can be shown:

_v(O) = 26.837 + m v - 5 log Dp + 5 log (92)

Eq. 92 defines the zero reference point in calculating the star profile model.

The average normalized irradiance in the ring structure of the Airy pattern is given by

Eid(_)/Eip(O) = 4k3/_4Dp3Ot 3

From Eqs. 80 and 87, neglecting % we obtain

(93)

Eis(_)/Eip(O) = 4p s(_))_2/_Dp2 (94)

The sum of Eqs. 93 and 94 is the ratio of the effective radiance at o_ to the effective radiance

at the center of the pattern, Ei(a)/Eip(O). Subtracting 2.51og[Ei(_)/Eip(O)] from Eq. 92 will
give the total effective radiance at _.

In completing this model by substituting Eq. 70 for the scatter coefficient, we have used

several simplifications: first, s = 2; second, we have assumed that cos _ = 1.0; third, we have

neglected the scaling of _01 with wavelength. (The latter was done inadvertantly in computer

programming before the wavelength scaling laws were fully analyzed. It has no effect on the

results in this section, however, since _ >> _01 for virtually all examples considered, and has

not been corrected in the computer program.) Eqs. 70, 93, and 94 combine to give

Ei(°0 4_3 4ki2Ps(at, _I) sin2 oll

Eip(O) = _.4%3_3 ÷ (95)cos o_ (a02 + (_2)Dp2

After conversion into log units and combination of Eqs. 92 and 95, the complete star profile
model becomes

,._v(Ot) = 30.303 + m v + 2.5 log Dp + 5 log X + 7.5 log o_ + 2.5 log cos a 1

+ 2.5 log (or02+ o_2)- 2.5 log [_3cos a i (_02 + ot2)

+ _3Dp_S_t2ps(Oq, Xl) sin2 oq] (96)

Itshould be pointed out that while we refer to visual magnitudes and to image irradiances in

lumens per square meter in Eqs. 90 and 91, the units are cancelled by the equality 89. Thus,

any form of magnitude may be used in Eq. 96, as long as m v and _v are consistent.

Eq. 96 has been used to generate a star profile model matching that of King at large scatter

angles. This is compared to the data of King and Kormendy in Fig. 5-16. King's star profile

and the model agree well at angles larger than 12 arc-seconds. Since Kormendy claims that below
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Fig. 5-16 -- Star profile model of Eq. 96 compared to King/Kormendy star

profiles; pure diffraction curve shown for comparison
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20 arc-seconds the curve rolls up due to scattering in the emulsion in which the image is recorded,

the mirror scatter model should not match the data below this angle. Eq. 96 assumes a slope of

2. We have made no attempt to match Kormendy's lower slope angle, although that could be done.

Since Kormendy's curve shows variation in slope, a more complex scatter function model will

be required to match it.

In Table 5-4, we showed that this model corresponds to a single scattering surface with

rms deviation (on the wavefront) aw = 221 Angstroms. In reality, the Schmidt telescope is implied

by Kormendy to have five optical surfaces: the primary mirror, two surfaces on the corrector

plate, and at least two surfaces on the spectral filter. (We are not familiar with the telescope
ourselves.) If we assume each refracting surface has the same scatter function, then the rms

deviation in the wavefront added by each surface is 98 Angstroms, as calculated through Eq. 78.

This would be about 49/_ngstroms rms on a mirror surface, and considerably more than that on

the refraction surfaces. This is not out of line with normal mirror finishing practices. Allowing

for the presence of some dust on the surfaces, the scatter data must be considered to be of a

magnitude consistent with optical surface scatter as its principal source.

We have used Eq. 96 to study the effects of varying the scatter constant ps(_l, ;_), the

wavelength, and the number of mirrors in the image forming train on the star profile of a zero

magnitude star. The results have been plotted in Figs. 5-17, 5-18, and 5-19. _ v(a) is plotted

versus log sin ol over angles ranging from just under 0.1 arc-second to 30 arc-minutes. All plots

are for an aperture diameter of 3.0 meters, and the roll-off angle has been set to 10 -6 radian.

Other parameters are identified on the figures.

Fig. 5-17 shows variation of the star profile as ps(Oti, ;_) is varied from 0.0001 to 0.1,

where ki = 632.8 nanometers and sin c_1 = 0.1. The smallest value of ps(_l, _) corresponds to

a superpolished surface for which _w _ 9/_ngstroms, and the largest corresponds to a very rough

surface for which a w _ 300 ]kngstroms. The intermediate values correspond roughly to the

normal range of surface finishes. As can be seen from the plots, the star profile for the super-

polished surface differs little from a straight line over its entire length, and is in fact virtually
identical to the diffraction limited profile at angles less that 1 arc-minute. The 0.01 curve shows

departure from the diffraction limited profile down to under 1 arc-second, but the departures are
small. Note that the diffraction limited profile is for the average of the ring structure. In this

regard, it is interesting to compare Fig. 5-17 with Fig. 4-65a, which shows the corresponding

plot for the simulated LST wavefront. Allowing for the 10-unit scale change in effective radiance

due to the difference in mv, the two curves do agree reasonably well.

Fig. 5-18 shows variation in the star profile as a function of wavelength. It gives profiles

for ps(_l, ;h) = 0.001 and _l and ki as before for _ = 632.8, 325, and 121.5 nanometers. Decreasing

the wavelength reduces the diffraction profile but increases scatter. Again, it is interesting to

compare these results with the simulated LST wavefront data of Section 4.8. The figures cor-

responding to the two shorter wavelength profiles are Figs. 4-66a and 4-67a. Again allowing for

the change in mv, we see that in these cases, the effects of ripple are pushing the PSF well above

the diffraction-average of our star profile model.

Fig. 5-19 shows the effects of having more than one mirror, where the scatter constant

P s(_l, kl) = 0.01 for the individual mirrors. These curves in effect assume that the specular
reflectivity of all mirrors is 1.0, so that the effective scatter function of n mirrors is n times

that of one mirror. It is also assumed that the star is in the field of view, so that all n mirrors

are illuminated by it. If some of the mirrors are only partially illuminated by light from this

star, the amount of scattered light must be reduced accordingly.

We have considered the effects of reducing the aperture diameter from 3.0 to 2.4 meters,

but have not plotted the results. The diffraction limited part of the curve is raised by 0.24

magnitude per square arc-second, and the scatter limited end of the curve is not affected at all.
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5.5.2 MISCAT Computer Prosram Model

Eq. 96 represents the effective radiance distribution of a star image as projected back into

object space. If we wish to determine the effective background radiance at a point (x, y) in the

sky due to scattered light from a series of stars located at points (xi, Yj), we can use Eq. 96 to

define the contribution of each, and sum the contributions. We need only define the angle _ij

between the points (x, y) and (xi, yj), and substitute it into Eq. 96 to compute the individual con-
tribution. The average star spacing and number of stars involved can be estimated from tables
in Allen 27. The field of view over which calculations are to be made can be determined from the

vignetting characteristics of the LST. We have developed a computer program, MISCAT, which

calculates the effective background radiance due to scattered starlight using this model. The

computation technique will be described here, and an operating manual is being supplied separately.

Eq. 96 is for an on-axis star, and must be modified to account for vigne_i_g in the telescope

for use in MISCAT. Fig. 5-20 is the telescope model used for calculating vignetting, and Fig.

5-21 shows the vignetting diagram. The user supplies the dimensions L, S, Dp, the central

obstruction diameter ratio c, and the unvignettod field of view 8, in radians. From these, the

computer calculates D L = Dp + L0, Ds = CDp, d s = aS, and d L = _L. The transmitting area A
is computed by standard formulas described in the operating manual. The vignetting factor W(_)

is given by

W(_) = 4A(_)/_(1 - ¢2)Dp2

The reduction in the effective radiance of a star at angle _ij,Jg(_ij),is given by

(97)

_(czij) = -2.5 log W(_ij)

Adding Eqs. 96 and 98 gives the corrected star contribution,_ij.

_ij = 30.041 + m v + 7.5 log Dp + 5 log _ + 2.5 log(cos oli) + 2.5 log(1 - e2)

+ 7.5 log c_ij+ 2.5 log(_02 + _ij2)- 2.5 log A(_ij)

- 2.5 1og[A3COS _1 ((_02 + _ij 2) + _3Dp_i_ _12Ps(_l, kl)sin °tl] (99)

To compute the total scattered lighL we must define the coordinates of each star and the

total number of stars. The maximum possible number of stars is limi{ed by the field of view

boundary at which W(_) = 0 (or an arbitrarily chosen fraction larger than 0). We can determine

the number of stars of a given magnitude lying within this boundary from Allen's tables of star

densities at different galactic coordinates.

The model starfield we use is illustrated in Fig. 5-22. The point at which we compute

effective scatter radiance is on the axis of the telescope, at coordinates (0, 0). The stars are

distributed on a rectangular grid with the spacing of a, in radians. If N k is the number of stars

per square degree of magnitude mk, the spacing is given by

(98)

Written out in full,this becomes

a = 0.01745 Nk -1/2 (I00)

then

x i = (i- 0.5)a;yj = (j- 0.5)a (i01)
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and

si j = qxi a + yja (102)

These values are substituded into Eq. 99, and the total effective radiance Jr T is calculated by

the summation

JfT = _2.5 log [_10-0.4Jfij]. (103)

[Sb ]
where s b marks the domain of the summation boundary. The number of calculations can be
reduced somewhat by taking advantage of symmetry. In Fig. 5-22, note that there are two differ-

ent star groups: group I repeats itself 4 times, and group H 8 times.

Input to the computer program includes: the telescope parameters defined above, the

constants defining the scatter function, the base wavelength at which calculations are to be made,

and a table of star magnitudes and population densities. As an output, the user receives a table

showing the background contribution for each star magnitude plus the total contribution from all

input stars. Further description of the program will be found in the operation manual.

5.5.3 MISCAT Results

Several sets of computations have been run with MISCAT to test the program, and to see

which design parameters most strongly affect the level of scattered starlight. Table 5-5 gives

the stellar population statistics for the galactic equator, which represents the most populous

sky background the LST will have to view. This data was used in all MISCAT runs described

here. The nominal telescope design parameters used were Dp = 3.0 meters, L = 13.2 meters,

S = 6.39 meters, c = 0.32, and 0 = 0.008 radian. The nominal scatter function parameters were

u 1 = 0.1, X = _ = 514.5 nanometers, ps(Sl, _l) = 0.01, and s 0 = 10 -5. These values should be

assumed except where otherwise indicated.

In Table 5-6, we show the effects of varying ps(U!, X_) and u 0. As expected, varying the
scatter coefficient does affect the background contribution significantly, although not as strongly

as expected. Thus, a change of 100× in the scatter coefficient has changed the background contri-

bution by roughly 50 to 60_ Change in s 0 has very little effect.

Table 5-7 shows that changing the tube length has little effect on the amount of scattered

starlight. This signifies that only the stars nearest the field of view are contributing significant

amounts of scattered starlight to the background. (Note that stray sunlight and earthlight scattered

off the inside walls of the telescope tube are strongly affected by tube length.)

Table 5-8 shows that changing wavelength strongly affects the amount of scattered starlight.

Here one has to be careful of how magnitude is defined. No attempt has been made to consider

spectral characteristics of the stars involved in the population data of Table 5-5, only thatd( T

will be consistent with the units of m k.

In evaluating these results, it should be noted that the darkest sky background expected

from the LST is on the order of_ v = 23.5 magnitudes per square arc-second. Of all the back-
ground contribution values shown here, the only one approaching that is for p s(Sl, _) = 0.1,

= 121.5. This is an example which should be far worse than will ever be encountered with the

LST. It should be pointed out that the data in Tables 5-6 through 5-8 represents additions to the

background, and that,g T = 25, for example, will increase the background total from 23.5 to 23.3.

This is not a significant increase, however. Thus, this data leads us to conclude that if our

scatter flmction model is correct, scattered starlight from the primary mirror will not be a
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significant factor in determining the effective sky background radiance, if the primary mirror
has a normally smooth finish. Superpolishing is therefore not necessary for reasons of control-

ling scattered starlight.

This data indicates that scattered light from stars outside the field of view should not be

a problem even in the worst situation, when viewing the Galactic equator. For this reason, we
have not completed calculations for the best situation, viewing the Galactic poles.

Table 5-5--Stellar Population Density
at Galactic Equator (stars per square degree)

(Allen 2_, page 234)

mk Nk

4 0.0178

5 0.0525
6 0.1514

7 0.4074
8 1.122

9 3.31
10 9.33

11 26.92
12 '75.86

13 199.53

14 524.81

15 1,318.

16 2,512.
17 6,760.
18 15,849.

19 31,622.
20 50,119.

21 100,000.

Table 5-6---_ T as a Function of Ps and '_0
at Galactic Equator (magnitude per square second)

Iv 0

PS
A

"0.001 0.01 0.1"

0.00001 30.46 28.55 26.14

0.0001 30.49 -- 26.20
0.001 30.64 -- 26.50
0.01 30.93 -- 26.29
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Table 5-7--_ T as a Function of L at Galactic Equator
(magnitude per square second)

L, meters 10 13.2 15 20

T 28.52 28.55 28.57 28.61

g

g

Table 5-8--_ r as a Function of Wavelength at
Galactic Equator (magnitude per square second)

PS

_,nm
"514.5 325 121.5"

0.01 28.55 27.62 25.51
0.1 26.14 25.15 23.01
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6. EFFECTS OF MIRROR SURFACE COATINGS

In the LST, the mirror substrates will be coated with a thin layer of aluminum to give high

reflectivity over the maximum possible spectral range. This coating will have a thin protective

overc0ating, probably of magnesium fluoride. It is legitimate to ask whether or not these coatings

will contribute significantly to the magnitude of the scatter coefficient. Unfortunately, there is

little concrete data from which one can draw quantitative answers to that question.

In general, it is assumed that the aluminum and MgF 2 coatings will neither add to nor smooth

out the surface roughness of the mirror substrate, but will reproduce it substantially intact. We

have discussed this subject with Dr. J. Stanford of the Michelson Laboratory, Naval Weapons

Center, China Lake, California. He feels that current data supports this theory. Normal scatter-

ing theory, therefore, predicts that these coatings will have no significant effect on scattering,

provided a competent job has been done in laying down the coatings.

There is one effect which can be attributed to the aluminum film, when coupled with the

surface roughness of the mirror substrate, which is not explained by scalar scattering models.

At wavelengths in the vicinity of 1300 _, the reflectivity of roughened aluminum surfaces is reduced

by surface plasmon coupling, which causes absorbtion of the incident radiation. The principal
reference of interest is a paper by Endriz and Spicer, 28 who have produced the data shown in Fig.

6-1. This data may indicate that a very smooth surface should be required for the LST mirrors

on the basis of system transmittance considerations alone. There is reason to believe that this

data is pessimistic, however, and does not apply to polished mirror substrates.

We are not in a position to do detailed research on surface plasmon effects. Our current

understanding has been developed through the cited reference and other literature, and through
discussions with J. M. Elson and J. Stanibrd of Michelson Laboratory. Mr. Elson has worked

with Ritchie 29 at Oak Ridge, and is one of the leading authorities on surface plasmon effects. He

is familiar with the work of Endriz and Spicer cited above, and has explained why it should be

considered pessimistic.

The principal reason for suspecting the data to be inapplicable in our case is that the

roughened surfaces were not a product of substrate polishing. The aluminum coating was layed

down on top of an undercoating made rough by cyrstallization in the coating process. It is suspected

that the spatial frequency distribution of the surface irregularities in this coating is quite different

from what can be expected in polished mirrors, and that the differences are such as to make the

plasmon coupling more effective. It is believed that the effects shown in Fig. 6-1 may be pessi-

mistic by an order of magnitude, perhaps more.

At present, there are too many unanswered questions to say anthing conclusive about surface

plasmon coupling and how it will affect ultraviolet performance in the LST. It is known that the

surface plasmon coupling is dependent in part on the spatial frequency distribution of the surface
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irregularities, but the exact nature of the dependency is not known; nor is there adequate data

as to the spatial frequency distribution of surface irregularities in polished glass substrates.

Most of the light absorbed in the surface plasmon coupling is reradiated, but again there

is little measured data available. The reradiation pattern will be dependent upon the spatial

frequency distribution of the mirror surface irregularities, it is believed. The nature of the

pattern is not known, but it is presumed that the distribution will be neither specular nor

Lambertian. There is a directional effect in mirrors that are overcoated to give enhanced re-

flectivity at a wavelength where the plasmon coupling is strong. In this case, there ls some

peaking (a 50 percent increase) of the reradiation at angles where the coating reflectance is

enhanced 22. This is not expected to be a problem with the LST, where the protective MgF 2 coating

is quite thin. It is expected that the reradiation pattern for the LST mirrors will be more nearly

diffuse. If this is indeed the case, it should contribute little to the background image irradiance.

This remains to be proven, however.

We expect to see new data on the surface plasmon effect in the near future. Dr. Stanford

has begun a new series of ultraviolet reflectance and scattering measurements on platinum and

aluminum. He has been associated with modifications to the synchrotron facility at Stanford
o

University. Intense synchrotron radiation is emitted between 350 and 3100 A, the range over

which he is making measurements. This unique light source is free of many of the experimental

problems that affect most far-ultraviolet measurements, and should give some of the best data

ever obtained for ultraviolet scattering. This should be of considerable help in evaluating the

effects of surface plasmon coupling. In addition, surface plasmon theory is advancing rapidly

for other applications_ so the analysis and interpretation of results should be improved.

In brief, surface plasmon effects will certainly be present in the LST mirrors at certain

wavelengths in the ultraviolet. While earlier evidence made this appear to be a particularly

severe problem_ current thinking has downplayed its significance. Conclusive quantitative data

is still lacking, but the area is being studied actively. We recommend that the subject be reanalyzed

when better data and better theory become available.
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7. FUTURE EXPERIMENTAL MEASUREMENTS PROGRAM

v

All of the foregoing analysis is based on extrapolation of existing measurements of wide

angle scattering and on large spatial frequency figure errors in mirror surfaces. Hard data on

the shape of the point spread function between a few Airy radii and about 1 degree does not exist,

nor does hard data exist on the heights and spatial frequency distribution of mirror surface

irregularities associated with scattering at these angles. The King/Kormendy star profiles and

wavelength extrapolations of infrared scatter measurements suggest that our wide angle scatter

function model is reasonable to a minute of arc or less, but below that no data exists which is

directly applicable to LST. There is also little data concerning the scatter contributions we

should expect from dust and mirror surface contamination. Further experimental measurements

programs are needed in these areas.

Two areas of experimentation are necessary, direct measurement of scattering from

astronomical grade mirrors, and measurements of the surface irregularities on those mirrors.

Preferably, the same mirrors should be used for both types of experiments so that the distribution

of scattered light can be related directly to the spatial frequency distribution of mirror surface

irregularities. In this section, we will discuss the requirements for both types of measurements.

Emphasis will be placed on the type of data required more than on details of experimental tech-

nique, except in certain aspects of the center of curvature scatter experiment.

7.1 MEASUREMENT OF SCATTERED LIGHT

Three basic problems make scattering measurements at small angles very difficult. First,

and most difficult, is the problem of.experimental setup: illuminating a large enough area to

cause scattering at the small angles desired, and getting close enough to the specularly reflected

beam to measure the scattered light. Second, eliminating other scatter sources from the apparatus.

The addition of other optical elements to control the first problem introduces additional scatter

surfaces, which must be accounted for in data reduction. Third, the scatter component we wish

to measure can be quite low compared to pupil diffraction, as illustrated in Fig. 5-1V. Separating

scatter from diffraction will therefore be difficult in many types of experiments.

The first two problems can be eliminated by measuring the scatter function for a spherical

mirror from its center of curvature, as described below. The spherical mirror is both the

scatter source and focusing optics, eliminating all other optical components between the point

source pinhole and the sensor aperture. Pupil diffraction can be controlled by apodization, as

mentioned in Section 4.5, allowing scattered light to be measured at very small angles. This gain

is purchased by a loss in other aspects of the experiment, however. There is no possibility of

an A-B comparison of the light beam with and without the scatter surface, since it is an intimate

part of the focusing optics. We will discuss these problems in Section V.l.1.

An alternate approach is suggested by the results plotted in Fig. 5-14: multiple wavelength

scatter measurements. We can estimate the scatter of, say, 0.5-micrometer radiation at 3 minutes

PRh_CF.DING PAGE BLANK NOT FI_ 7-1



of arc by measuring the scatter of lO-micrometer radiation at 1 degree. Such measurements

could be done with a number of existing experimental setups, which makes this approach attractive.

Some of the advantages and disadvantages of this approach will be discussed in Section 7.1.2.

7.1.1 Center of Curvature Scatter Experiment

The basis of the center of curvature scatter experiment is illustrated in Fig. 7-1. A

spherical mirror images its center of curvature with perfect fidelity. If we place an illuminated

pinhole to one side of the center of curvature of the mirror, it wi!l be reimaged perfectly at a

point equidistant from the center of curvature and directly opposite the object pinhole. The image

point will be spread out by pupil diffraction plus scattering due to mirror surface irregularities.

This pattern can be scanned with a pinhole photometer to measure the diffraction and scatter

components. The only optical component between pinhole light source and pinhole photometer

besides the spherical mirror is air, and that can be eliminated by running the test in a vacuum

chamber if necessary. There is no fundamental limitation on the diameter of the spherical

mirror except cost and availability, so scatter measurements could be made at very small angles.

There are two important limitations on the experiment, however. The measurements must

be compared to theory, since there is no means of removing the scatter surface without also

removing the focusing surface. Secondly, as shown in Fig. 5-17, the scattered light will be masked

by diffracted light at small angles for all but the roughest mirror surfaces, if that scatter function

model is correct. Thus very careful control of the experimental parameters will be necessary,

and data reduction will be complicated.

In Section 4.5, it was shown that changing the pupil illumination pattern from fiat to a

Gaussian function of the distance from the center of the pupil will suppress pupil diffraction with-

out affecting scatter due to diffraction by wavefront irregularities. Apodization of this type would
serve several useful functions in the scatter measurements experiment. First, it would allow

measurement of the scatter function to within several Airy radii of the center of the pattern.

Second, comparison between measurements with the Gaussian pattern might serve the function

of an A-B test, reducing somewhat the difficulties of direct comparison to theory. Third, apodiza-

tion concentrates all light except the scattered light within the central maximum, to a good

approximation. Thus, measuring the amount of light in the central maximum and comparing it
to the amount of light striking the mirror will give the total scattered light from a few Airy radii

to 90 degrees.

The latter task has some obvious experimental problems as well: it is necessary to map

the illumination pattern of the mirror accurately, and to discount absorbtion by the aluminum

coating. If these problems can be overcome, however, the technique should give a far truer

measure of the total scattered light than the usual integration sphere measurements, which usually

don't measure the scatter component within a degree or so of specular.

The experimental problem now is to generate the Gaussian apodization function in the il-

lumination pattern. Two closely related techniques for doing this have been suggested by Adrian

Walther and Roland Shack in personal discussions. Both rely on the filtering technique illustrated

in Fig. 7-2. This shows a light distribution filter formed by an absorbing medium sandwiched

between a fiat glass plate and a convex spherical lens. The transmittance r(y) of the absorbing

medium at height y above the centerline is given by

r(y) : exp(-_ c t) (104)
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Fig. 7-1 -- Basic center of curvature scatter measurement experiment

Entering intensity Gausslan Transmitted

distribution filter intensity
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Fig. 7-2 -- Filter for producing Gaussian intensity distribution
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where _c is the absorbtion constant and t is the thickness of the absorbing medium. But if the
radius of curvature of the spherical surface is R >> y, the t = y2/2R, to a sufficient approximation.

Thus

U

i

r(y) = exp(-_cY_/2R), (lO5)

which is a Gaussian function of y.

The suggested techniques for incorporating this effect into the center of curvature scatter

experiment are illustrated in Fig. 7-3. A. Walther suggests a large cell followed by a focusing

lens, with a truncating pinhole being necessary to eliminate any scattering from the lens. R.

Shack suggests a Gaussian pinhole formed by a very small sphere sandwiched between two fiat

glass plates. The absorbing medium could be a solid in the first case, but must be a liquid in

the second. The latter is probably preferable in either case, since it might eliminate speckle

problems with a laser light source, and since in any case it allows control of the width of the
Gaussian profile by diluting the absorbing medium or making it more concentrated.

The center of curvature technique as described here can be applied only to spherical mirrors,

if other scattering surfaces are not to be added. It could be used as the basis for an A-B type

comparison for a large folding flat. In this case, one would compare the scatter function of the

sphere to the combined scatter function of the two mirrors used in double pass. It is also possible

to do a center of curvature test on large concave mirrors with the aid of a null lens, if scattering

in the null lens can be discounted in data reduction. The fact that the null lens optical surfaces

are close to the focus of the system should help. Perhaps one of the more important experiments

to be run on spherical mirrors is to insert refracting elements near the focus to test whether

scatter measurements can be made on parabolas during fabrication using this technique.

We feel that the center of curvature scatter experiment represents the most powerful tech-

nique for measuring scatter at very small angles of any presently suggested. We recommend that

it be pursued further.

7.1.2 Multiple Wavelength Scatter Measurements

While it is difficult to make scatter measurements at angles well under 1 degree, scatter

measurements are routinely made at angles of 1 degree and greater by a number of workers 17,2°,22,26

at a variety of wavelengths. We hav e shown in Fig. 5-14 how scatter measurements of 10.6-
micrometer radiation at 1 degree can be scaled to give visibie light scatter data at 3 arc-minutes.

In principle, then, one can build up narrow angle scatter data at short wavelengths by making wide

angle scatter measurements at longer wavelengths.

This approach to narrow angle scatter measurements has several advantages. First, it

can be done with equipment which already exists in a number of laboratories. Second, it gives a

method of detecting at least some instrumentation difficulties. Most scatter measurements we
have seen show the scatter functions measured to roll upward at small angles. In at least one

instance, l_ this was a result of instrumentation problems, and not a real effect. A scatter mea-

surement series run with, say, 1.6-micrometer radiation and scaled to 0.5 micrometer would

overlap data taken at the latter wavelength, but with the angle scale shiRed downward by a factor

of 1/3.2x. This should reveal any angle dependent instrumentation problems and allow data to

be corrected for them.

The wavelength scaling rules demonstrated in Fig. 5'14 are an inherent property of the

"spectrum of plane waves" scatter model, which attributes scattering to the geometry of the

wavefront irregularities introduced by reflection off the mirror. If the scattering process can

legitimately be represented as diffraction by a series of cosine phase gratings of different spatial

frequency and phase amplitude, these wavelength scaling rules will be valid. Thus if we take
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(a) Walther Gausslan plnhoIe

(b) Shack Gaussian pinhole

Fig. 7-3 -- Techniques for producing GauSst_n p_nholes
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scatter data at a series of wavelengths, and find that after scaling there are discrepancies which

cannot be explained by instrumentation errors, then this is evidence that other scatter mechanisms

are involved.

There are both advantages and disadvantages to the latter aspect of wavelength scaling. The

advantage is that it may aid in defining spectral regions where other scatter mechanisms pre-

dominate. The disadvantage is that wavelength scaling of this nature may not be applicable in

wavelength regions where nonscalar scatter mechanisms are suspected. In particular, it seems

likely that this is true in regions of the ultraviolet where surface plasmon coupling changes

reflectivity characteristics.

We feel that coordinated scatter measurements at a number of wavelengths with subsequent

wavelength scaling of the results would be a useful experiment to perform, both in terms of

improving our understanding of the scatter mechanism, and in terms of extending (with relatively

little expense) the angular domain over which visible and near ultraviolet scatter coefficients are

known. A series of scatter measurements should be made on the same mirror samples at a

series of wavelengths. The wavelengths should run from 10.6 micrometers in the infrared to as

short a wavelength in the visible and near ultraviolet as possible. The wavelengths should be

spaced apart no more than a factor of 2 to 4 in wavelength to maximize overlap of data in angle

space. (This would require the addition of measurements somewhere in the range of 3 to 5 micro-

meters.) The range of angles over which scatter measurements are made at each wavelength

should be maximized for the same reason.

7.2 SURFACE IRREGULARITY MEASUREMENTS

In discussing surface irregularity measurements here, we will confine ouselves primarily

to discussing what should be measured, rather than techniques for making the measurements.

Dr. James Wyant of the University of Arizona Optical Sciences Center has prepared a survey of

current measurement techniques and their limitations, which we include as Appendix B of this

report. (This was prepared under a consulting agreement on NASA contract NAS8-29949. We

include it here to avoid any unnecessary duplication of effort in this section.) Dr. Wyant's memo

will be referenced where called for.

In our consideration of the relationship between surface irregularities and the scattering

they cause, it is clear that there are two areas of study in which data is not available. First,

there are no surface height profiles with lateral resolutions in the range of a few micrometers

to tens of centimeters. Second, where height profiles have been taken, no attempt has been made

(or at least none published) to compute the spatial frequency spectra of the surface irregularities.

Instead, rms deviations are measured or estimated, and used in statistical models which assume

certain spatial frequency distributions. As we have tried to demonstrate in Section 5, the most

commonly used assumption in this regard, which gives the Gaussian autocorrelation function, is

wrong.

The lateral resolution problem is best illustrated by Table 7-1. The spectrum of phase

gratings model for scattering by surface irregularities shows that the scatter angle a is related

to the period d of the phase grating by the grating equation
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Sin _ = ±_/d (106) j

for normal incidence. Thus, if we are interested in investigating surface irregularities associated

with scatter angles from 1 arc-second out to a few degrees at wavelengths in the visible and

ultraviolet, we must be able to resolve spatial frequencies with periods in the range indicated in

Table 7-1.

M

J

7-6
w



r

m

Table 7-1 -- Period d of Phase Grating Associated

With Scatter _ie a and Wavelength

Scatter Wavelength (_._), nanometers

Angle, a 632.8 325.0 121.5

1" 130.52mm 67.04mm 25.06mm

3" 43.51mm 22.35mm 8.35mm

10" 13.05mm 6.70mm 2.51mm

30" 4.35mm 2.24mm 835.4pm

1' 2.18mm 1.12mm 417.7_m

3' 725.1#m 372.4_m 139.2_m

I0' 217.5_m lll.Tpm 41.77#m

30' 72.51 #m 37.24#m 13.92 pm

1 ° 36.26pm 18.62_m 6.96pm

3 ° 12.09_m 6.21_m 2.32pm

10 ° 3.64#m 1.87 pm 0.700 pm

30 ° 1.27 _m 0.650pm 0.243 _m
90 ° 0.633 _m 0.325_m {_.122 _m

It is clear that the range of resolutions involved is too great to be handled by an single

measurement technique. Dr. Wyant has pointed out that most measurement techniques have

resolutions which are not much greater than 500 elements across a field of view. For the finest

resolutions involved, it is clear that one must sample areas of a mirror rather than measure its

entire area, at least for LST size mirrors. We will therefore not recommend pursuit of any

specific measurement technique, except to point out that some of the tests, such as the Lyot test,

are readily adapted to the type of experimental setup used for the center of curvature scatter

experiment. These might therefore be considered to be logical companion experiments.

We feel that three aspects should be stressed in future measurements programs. First,

the spatial resolution range should be expanded to include the domain between figure error and

surface microstructure. In LST terms, this covers the range from perhaps 15 centimeters down

to well below 1 millimeter. Second, Fourier transforms of the surface height distributions should

be performed so that spatial frequency distributions can be measured. Third, programs which
coordinate scatter measurements with surface irregularity measurements and rms deviation

calculations should make sure that the spatial frequency bandpass on the surface measurements

include only those spatial frequencies appropriate to the range of angles over which scatter

coefficients are being measured.
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Appendix A

TRANSLATION OF SCHWESINGER'S PAPER

w

The following is a translation from German of the article "Illuminance Distribution in the

Diffraction Image of Telescope Mirrors with Random Surface Irregularities," by G. Schwesinger,

from OPTIK, vol. 34, 1972.
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ILLUMINANCE DISTRIBUTION IN THE DIFFRACTION IMAGE OF
TELESCOPE MIRRORS WITH RANDOM SURFACE IRREGULARITIES*

by G. SCHWESINGER

CARL Z£iSS, OBERKOCHEN

Translated by Serge Kunica and William B. Wetherell

ABSTRACT

In the literature, the possibility has been discussed of

achieving diffraction limited performance even with large tele-

scope mirrors and despite atmospheric scintillation. The present

article investigates whether certain assumptions made in this

connection are really permissible. In particular, it is con-

cerned with the problem of suitable correlation or covariance

functions for describing random wave departures by statistical

surface errors. It is shown that the surface undulations of

actually fabricated mirrors are characterized by correlation

functions strongly departing from the published assumptions.

This leads to a different distribution of illuminance in the

point image. For practical application in instrument design,

values are computed for the encircled energy. Some arguments

also indicate a different shape for the covariance functions

associated with scintillation effects.

i. INTRODUCTION

Wavefronts having random statistical variations in amplitude and

phase are examined in the theory of wave propagation in the turbulent

atmosphere. In recent years, many articles have appeared which are

addressed to this problem, and which also deal with the difficult question

reguarding the form of the correlation function or covariance function of

these statistical variations. The knowledge of these functions is impor-

tant, among other things, for the determination of the illuminance dis-
1

tribution in the diffraction images formed by lenses and mirrors. Chernov

was the first to deal with these questions in general terms, apparently.

Scheffler 2'3 has built upon Chernov's analysis and theoretical results in

an attempt to show that it should be possible, under certain postulated

conditions, to drive the optical performance of large telescopes, as

represented by the effective star-disk image diameter, up to nearly the

limit set by diffraction, even when taking into consideration the image

degradation due to atmospheric scintillation. This would require the

* This article first appeared in 0PTIK, vol. 34, pp 553-572, 1972.

The research upon which this article is based was part of a technology

study funded by the Federal Ministry for Education and Science.

Responsibility for its contents lies entirely with the author.
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optical surface to meet surface irregularity tolerances which have not yet

quite been realized, at least not in very large instruments. The practical

application of the technique would therefore not be conceivable without

the dedicated effort of the instrument manufacturers to build a mirror

which is substantially better than has ever been built. If one realizes

that the present state-of-the-art is attained only with considerable

difficulties and enormous fabrication effort, one can imagine that the

required accuracy will necessitate considerable advances in related

technology, and large amounts of money.

The latter concern should by no means be taken to have been the

principal reason for voicing objections to Scheffler's results, however.

In the main, the Justification for the doubts expressed above was based on

observational astronon_, which, until recently, has given no valid

indication that diffraction limited imagery is attainable, even with the

best of seeing conditions, i.e., an effective star-disk diameter of 0.3

arc seconds or less. (Various reasons have been advanced for this. )

However, such objections would only become valid if the theory were itself

simultaneously disproved, because otherwise the seemingly irrefutable

argument that such a precision mirror as is required by Scheffler does not

exist, or can exist only as the rarest of exceptions, may be challenged.

One earlier observation which has been reported 4 could possibly be taken

as an example of such an exception. According to this report, an 82-inch

telescope was used under the best seeing conditions to resolve a double

star whose components are separated by only 0.i0 arc second. This report

is cited here without comment, to illustrate that where so fundamental a

question is concerned, considerable differences of opinion exist.

The difficulty of the problem is further increased, owing to the fact

that two image degrading effects, atmospheric scintillation and fabrica-

tion errors of the telescope mirror, work in concert: therefore, both must

be accounted for simultaneously by one general theory, if conclusions are

to be drawn with certainty reguarding their optical effects. The work of

Scheffler should have been a point of departure for this, in that it

attempted to treat both error sources through the same statistical theory,

and to draw quantitative conclusions. A statistical theory lends itself

readily to the treatment of scintillation, particularly since in most

instances the effects of scintillation are recorded as a temporal average.
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The analysis of irregularities in the mirror surfaces on a statistical

basis also offers a considerable advantage, since one can normally assume

that a carefully executed fabrication process will greatly reduce or com-

pletely eliminate systematic figure errors such as zonal aberrations,

astigmatism, etc., so that in the end there remains a wavefront with small

irregular deviations, whose configuration is not easily described analyti-

cally, and whose effect on the diffraction image depends on the coinciden-

ces of a given case. With a statistical treatment, however, one abstracts

from these coincides and ascertains expectation values, which have a

more general significance, and which allow fundamental questions to be

answered. It is evident, however, that when evaluating image quality for

a real system, measuring the actual surface irregularities remains

desirable.

The scope of the present study is to explore how random mirror errors

can be analyzed from a statistical viewpoint, when one discards the

special simplifying assumptions which Scheffler has used in order to make

the problem more easily manageable mathematically. An assessment will

therefore be made as to whether one or another of these quite plausible

assumptions has not led to questionable results with reguard to the

necessary surface quality of the mirrors. The question as to whether

Scheffler's equation for the _s{_ssment of scintillation is admissible or

not will be treated as a side issue. In oral discussions, it was variously

surmised that the theory cannot be satisfied in some reguards: however,

that lacks final clarification.

2. THE SIGNIFICANT RESULTS OF SCHEFFLER'S TREATMENT

TO begin with, we will review briefly the main steps in the mathema-
1

tical analysis used by Scheffler, which originated with Chernov.

A telescope of focal length F, and having a circular pupil, is

assumed. Points in the pupil are represented by the coordinates (yl,Sl),

defined so that their origin lies on the optical axis. The complex ampli-

tude function due to a point source at infinity, located on the optical

axis, will be evaluated at the paraxi_ point (y,z) in the focal plane.

This complex amplitude function will be influenced by the aberrations of

the optical system which originate in the random surface deformations of

the primary mirror. These deformations shall be of a statistical nature,

A-5



and are so defined that their arithmetic average is zero. The correspond-

ing phase disturbance S(Yl,Z 1) in the pupil is 2k times the height of the

surface deformation, where the wave number k = 2_/X, and X is the wave-

length. The variance of the phase disturbance is _2 The complex amplitude

function u at the point (y,z) in the focal plane is given by the well

known relationship 5

u(y,z) = If ei[S(Yl"Zl ) + (k/F)(YYl + ZZl)]dYldZl (I)
A

The domain of integration is the pupil area A. A complex constant in

front of the integral sign is immaterial for the problem at hand, and has

therefore been omitted. If u* is the complex conjugate of the integral,

then the irradiance H(y,z) is given by the product uu*. Formally, this can

be written

S(y,z) = If dYldZ 1 // dY2dz 2 ei[S(Yl"Zl ) - S(Y2"Z2)]
A A

× ei(k/F )[y(yl_y2) + Z(Zl_Z2)] (2)

The evaluation of this quadruple integral for the phase deviations S

for a given individual case would yield for this case the corresponding

point spread function in the image plane. One could, of course, obtain it

more easily from equation (1) by forming the product uu _. Here, however,

we are only interested in the statistical expectation value of this inte-

gral, which is the average over all possible distributions of phase devia-

tions having the same variance _2 and the same waveform characteristics.

The latter is described by a normalized correlation function, which is

defined as follows;

K(Yl, Zl;Y2, Z 2) = K(r) = <S(Yl, Zl)S(Y2, z2)>/_2,

where

r = [(Yl - Y2 )2 + (zl - z2 )2}1/2

(3)

(_)

<> signifies the average over the area of the pupil. Since the mean value

of S is vanishingly small, the definition (3) is also the normalized

covariance function. With a correlation function of this form, it was
6 1

shown previously by Keller, and more strictly confirmed by Chernov,
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that the following relationship is valid:*

<ei[s(yl,zl) - s(y_,z_)]> _- e-_211- _(r)] (5)

From this, one obtains as the median irradiance distribution,

-H(y,z) = II dYldZ 1 IAI dY2dz 2 e-_211 - K(YlZl;Y2Z2)]A (6)

i(k/E)[y(y I - y2 ) + z(z I - z2)]
× _

This integral cannot be separated into two double integrals, making

its evaluation considerably more difficult.

From this so far rigorous theory, Scheffler derived quantitative

results. For the correlation function, he assumed a Gaussian distribution

function with a correlation length _, thus

-(r/_)_ (7)
K(r) = e

Scheffler used this function n0t only to describe the surface irregu-

larities of the mirrors, but also the phase variations caused by scintil-

lation. The function K(r) of equation (7) has the required endpoint

characteristics that K(O) - I and K(_) = 0. It is, despite this, unsuit-

able for the problem under consideration, as will be demonstrated in

section 3.

For the purpose of comparison with later numerical results, only

Scheffler's final equations, which were derived from equation (6) with the

aid of some approximations, are presented here. They read as follows,

where R is the radius of the pupil and _ is the angular distance of the

point (y,z) from the optical axis,

= (y2 + z2)l/2/F .

Therefore,

(8)

(I - e-S2)(_/R)2e -(1/4)(k_a)2 _ < 1, (9a)
J

; 4e [_ ] + (1 _ e-a2)(_/_R)2e -(I/4)(k_a/e)2, (_ >_/. (9b)

H(a) is so normalized that for a perfect mirror, (q _ 0), the irradlance

* See the Appendix
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Figure i Intensity distribution H in the diffraction

image for a Gaussian correlation function with corre-

lation length _ = R/2. The broken curve is from equa-

tion (9), and the solid curve from equations (31),(33).

is 1.0 at the axial point _ = 0. Scheffler limits the validity of these

equations to the domain (_/R) 2 << 1, and considers this assumption consis-

tent with the measured surface irregularities of telescope mirrors. This

assumption will be investigated more closely later. However, a further

question arises in connection with the derivation of equation (9), with

reguard to the validity of several decisive mathematical simplifications

Scheffler introduced in order to solve the integral (6) using the function

K(r) in the form of equation (7). A computational example gives a partial

answer. In figure I, the broken curve represents the evaluation of equa-

tion (9) for the ease o = 1 and £/R = 1/2. The solid curve represents a

considerably more accurate solution to the integrals which was derived

using the method of computation described in section 5. As a criterion of

accuracy, it can be shown that the above technique gives a value of 0.4645

for _(0), as compared to 0.5259 from equation (9). For the special ease of

the axial point, the integral will yield an analytically exact solution,

giving a value of 0.4581. Although the assumption that (£/R) 2 << 1 is not

completely satisfied, Scheffler's solution follows the basic characteris-

tics quite well, even though it is somewhat optimistic with reguard to the
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sharpness of the energy concentration. For smaller values of (£/R), the

errors will probably be somewhat lower.

From equation (9), which states the core of his theory, Scheffler has

concluded that large reflecting optics having random surface irregulari-

ties can, under certain circumstances, achieve a high definition image

approaching the angular resolution possible with perfect optics, when

observing through the turbulent atmosphere. The smaller the correlation

length £ and the variance a2 of the surface deviations, the greater the

achievable resolution. Scheffier estimates that the value of £ should be

less than I/5th to 1/10th of the pupil radius R, and that the value of

for the combination of both sources of phase disturbances should probably

be less than 1. In actuality, as is shown by equation (9), the fraction of

energy represented by the second term is distributed very evenly because

of the small value of _2 in the exponential and in the factor in front of

the exponential. In the vicinity of the optical axis, therefore, the re-

duction in intensity is due entirely to the factor exp (__2) by which the

perfect lens diffraction pattern is:mu!tiplied. When one Judges only in

terms of a resolution criterion such a _ Rayleigh's criterion, this diminu-

tion in intensity will not result in a reduction in resolution.

The significance of this situation can be assessed approximately by

inspecting integral (6) without resorting to calculations. When K(r) falls

rapidly to zero at small radii, then the first term in the integrand is of

almost constant value exp (__2), disreguarding the effects of the area

elements, which correlate with each other only for extremely small values

of r. The number of occurrences of such correllations over very short dis-

tances is, however, very small compared to the number of remaining cases.

At both ends of the range 0 < r < 2R, the number of occurrences of corre-

lative connections reduces to zero (see section 3.) One can state, under

these presumed conditions, that in the vicinity of the optical axis, at

least, H is approximated by the aberration free diffraction pattern, as

reduced by the factor exp (__2), since the aberration free pattern is

governed by the second term of the integrand. It can further be expected

that the missing energy will be found in a broader overlay. Conversely,

one can therefore state that the correlation functions which fall off less

A-9



steeply than surmised above, or which show significant variations over a

significant portion of the r-domain, can so modify the condition of H that

Scheffler's conclusions are no longer permissible. This question shall now

be pursued.

3. THE SURFACE IRREGULARITY STRUCTURE OF ACTUALLY FABRICATED TELESCOPE

MIRRORS

The correlation function defined by equation (3) can be determined

numerically, if the surface irregularities of the mirror in question are

well enough known. One can then divide the pupil into the finest possible

matrix of M area elements, e.g., in equal sized squares, and perform the

summation of the product SCYl,ZT)S(Y2, Z _) over all the area elements whose
7 I

centroids are separated by between r - _--Arand r + _Ar. Let Pc(r) be such

a partial summation for the mean separation r with an incremental width

Ar = e. Let the associated number of individual terms in the summation

P (r) be n (r). The quotient Pc/he represents the average value£ E

<S(Yl,ZT)S(Y2, Z2)>. The correlation value to be formed in correspondence

with equation (3) thus becomes

P (r) n (0) P (r)

(r) - _ _ _ . E (io)
o2n (r) n (r) P (0)

In figure 2, correlation functions computed by this process are shown

for three actual telescope mirrors.* Unfortunately, reliable numerical

data about the surface irregularities of large telescope mirrors is very

seldom available, and is not usually accurate enough to allow structural

peculiarities to be assessed in detail. As a case in point, consider the

well known article on the surface figure accuracy of the Lick 120-inch

mirror. 7 Scheffler inferred from the surface contour map published in that

article that his postulated value of R/3 for the correlation length £ of

equation (7) is compatible with the surface irregularity structure of the

Lick mirror. Figure 2 shows, however, that the actual correlation function

of the Lick mirror is not even approximately Gaussian. The most prominent

* Contrary to appearences, the slope of these curves is zero at r = 0. As

Chernov has noted, this is always valid, if the variable quantity to be

described, in this case the surface irregularities, is free of disconti-

nuities.
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Figure 2 Correlation functions of the surface irregularities

of three actually fabricated telescope mirrors.

difference Is the pronounced oscillation, which extends over a wlde range

of r.

Similar oscillations are exhibited by the correlation functions of

two newer mirrors of medlum slze which have been finished by the firm of

Carl Zeiss, Oberkochen. Both have clear apertures of a little over 1.5

meters. Figure 2 shows the condition of the primary mirror of the GO-inch

Ritchey-Chr@tien telescope of the Leopold-Figl Observatory for Astrophys-

ics in Vienna. The regrettably large dispersion of the data points was due

to the simplified data reduction technique used, but it does not obscure

the existence and approximate amplitude of the oscillations. A more

careful evaluation, using a finer matrix of sample points, eliminates the

large dispersion of values, as figure 2 shows for the spherical primary

mirror of the Schmidt telescope of E.S.O. In this case, the oscillations

are particularly pronounced.

The fundamental similarity of the correlation curves for these three

mirrors Is remarkable, almost astonishing, when one considers the manifold

differences in the manufacturing technology. This is implied in part

through the varying characteristics of their surface cross sections.* As

you know, the laps for the final polishing of spherical and aspheric

mirror surfaces have somewhat different configurations, and the polishing

* Parabolic, hyperbolic and spherical, respectively. [Translators' note.]
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machines are also adjusted to different kinematic parameters during opera-

tion. Also, the construction of the polishing machine on which the Lick

mirror was finished differs considerably from the configuration of the

machine which was used with both of the other mirrors. Finally, the form

of the Lick mirror substrate, and therefore its elastic behavior, is quite

different from both of the smaller solid mirrors, since the Lick mirror is

thinner and has a ribbed back surface. The level of accuracy with which

they were figured also differs. For the Lick mirror, _ is about 2, and for

the other two mirrors, _ is 0.43 and 0.7, respectively.

The similar nature of the correlation curves is probably attributable

to the circumstance that the required optical precision can be attained

only through the use of large area laps, approaching the size of the

mirror, at least during the early stages of fine polishing. In fact, when

one determines the spatial frequency spectrum of the correlation curve,

through Fourier transformation, one finds a distinct maximum at wave-

lengths which are even somewhat longer than the mirror radius. This is in

contradiction to Scheffler's assumptions.

The appearence of negative correlation values, which also contradicts

Scheffler's assumptions, can be explained theoretically. To begin with, it

can be stated that the sum of all the previously mentioned partial sums

P , which are found by numerical analysis of K in the domain 0 < r < 2R,
E g -- --

vanishes, since, according to previous assumptions, S is a statistical

function with a vanishing average value. From this it follows, with

reference to equation (i0), that

n (0)-

c cP (o)

If one imagines that the incremental width Ar is made smaller and

smaller by increasing the number of area elements, then in the limit as

M ÷ _, one can define a continuous distribution function, ¢(r), which

indicates the relative frequency with which pairs of area elements can be

found in the plane of the pupil whose mutual separation lies between r and

r + dr. Obviously it follows that

dn(r) = const ¢(r)dr , (12)

and the sum (ii) becomes the integral

im

m

m

u

R

im

m

g

m
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L,

I K(r)dn(r) = 0 (13)
r

In the following, r is expressed as a multiple of the pupil radius R. From

(12) and (13), it follows that

I K(r)¢(r)dr = 0 . (14)
r

Since _(r) is always positive, the possible correlation functions K(r) are

therefore subject to the limiting constraint that in the value domain r,

both positive and negative values of the function must occur.

For the computation of the irradiance distribution _, it is therefore

essential to employ a correlation function which fulfills the constraint

(14), and which conforms to the characteristics of the empirically

measured function. The frequency distribution _(r) required for that pur-

pose falls from a maximum in the middle of the r-domain to zero at both

ends of that domain. One can recognize this intuitively, through the fact

that the separation vector r may have several degrees of freedom to vary

vector length within the area of the pupil, e.g., displacement parallel to

the longitudinal or transverse axes, as well as rotation. These degrees of

freedom are restricted for r = 0 and r = 2, however. In the former case,

rotation is meaningless, while in the latter, no translations are possible

except rotation about the center of the pupil. The relative number of

occurrences ¢(r) of the possible attitude variations of the vectors r, or

in other words the probability @(r)dr that two points within the pupil lie

separated by a distance in the range r to r + dr, can be shown to be as we

state here without proof:

¢(r) = Cr { 2(1-r) 2 +

1

¢(r) = Cr I arc cos[(r 2 + p2

r-1

The constant C = 1.2731.

1
2

I arc cos[(r 2 + p - 1)/2rp]_dp}, r < 1 , (15a)

1-r

- 1)/2rp] pdo , r >__1 . (15b)

The theoretical shape of $(r) is shown in figure 3. Additional points

have been introduced representing two of the numerical evaluations of K(r)

described above, specifically having the number of sample points M = 144

and M = 305, respectively. The number of sample points is obviously still

much too small to achieve a smooth frequency distribution in this

empirical fashion.

=
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Figure 3 Frequency distribution @(r) for the point separa-

tion r with a circular pupil of radius 1.0.

4. CHARACTERISTICS OF THE COVARIANCE FUNCTION FOR ATMOSPHERIC

SCINTILLATION

Since the use of a function K(r) of the form (7) to describe the

mirror surface irregularities is of doubtful validity, the question

remains as to what the covariance functions of the variations in index of

refraction, amplitude and phase due to atmospheric turbulence look like.

The problem of defining these is very difficult and has not as yet been

resolved satisfactorily. Even though the definitive answer to the postula-

ted question must be reserved for later investigation, it is still possi-

ble to say with certainty that the effects of scintillation on image

formation by a telescope cannot be described by a covariance function

which is always positive. When one considers a plane wave of infinite

transverse extent which has been transmitted through the atmosphere, it

can be seen on the basis of elementary considerations that the frequency

distribution ¢(r) is proportional to r. The constraint (14) reduces to

: K(rJrdr = 0 .

0

This constraint was previously used by Fried 8 as a control for the

covariance function he derived, and he also noted that the appearance of

negative covariance values should be expected, in principle, with two

dimensional distributions. In one special case, that of intensity

scintillations, it has already been shown on the grounds of energy

conservation that the transverse covariance function must have nerative

values over a substantial domain. This has been pointed out by Burke 9.
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Shack I0 also used the integral constraint cited above. The Gaussian dis-

tribution (7) used by Scheffler does not appertain at all to covariance

functions which satisfy this constraint. The Gaussian Distribution (7)

therefore cannot be used without reservations for the assessment of the

effects of turbulence.

The above considerations for a wavefront of infinite extent must be

modified for image formation in a telescope, since the pupil transmits

only a finite region of the wave. However, this does not alter the fact

that negative values of the covariance function will appear.

Heidbreder and Mitchell ll have shown quantitatively that For small

phase disturbances, the principal effect of scintillation _s a reduction

in intensity at the center of the diffraction image and a reduction in

resolution in comparison to the diffraction limit, even if the transverse

linear displacements, i.e., the "dancing" of the stars, could be complete-

ly compensated for through a servo control device. Without compensation of

the directional scintillation, however, the resolution degradation will

increase significantly, as can be seen from the sample calculations in the

cited publication.*

5. THE EFFECT OF RANDOM SURFACE IRREGULARITIES ON THE DISTRIBUTION

OF IRRADIANCE IN THE DIFFRACTION IMAGE

With the realistic description of the surface irregularity character-

istics of telescope mirrors we have derived, it is possible to deduce

reliable expectation values for the structure of the point spread

function. Even if one has to forgo assessment of the scintillation effects

while its theoretical basis is still uncertain, the prediction and evalu-

ation of the expected image quality due to the mirror alone is of the

greatest importance for instrument definition, mirror technology and

testing methodology. The following derivation points in this direction.

To begin with, the integral (6) from which we start is rewritten in

polar coordinates, (pl,¢l), (02,_ 2) and (0,¢), where

yj = Rpj cos Cj ; zj = ROj sin Cj ; j = 1,2 ,

and there are corresponding formulas for y and z. The radii 01, 02 and 0

are normalized to the value of R, as was r. It is also established that

* In this reguard, see also references i0 and 12.
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cj = ¢j- ¢ ; j = 1,2 .

A simple transformation results in

Y(Yl - Y2) + z(zl - z2) = R210plc°s (¢I - ¢) - °P2c°s (¢2 - ¢)]

= R20(01 c°s ¢1 - 02c°s ¢2 )

With the new variables,

k 2
- F r 0 = k2_ , (16)

the integral assumes the following form, which is independent of ¢, i.e.,

rotationally symmetric:

_ 2w 2w 1 1 -_2[1-K(r)] ei_(01 cos ¢1 - 02 cos ¢2 )H(_) = I f f f e

where

0 0 0 0 × 0102doldo2d¢Id¢ 2 , (17)

[o12 2 - , (18)r = + 02 - 201P 2 cos (_2 ¢1 )]1/2

This integral generally cannot be solved for an arbitrarily chosen

function K(r). If one realizes that the first exponential in the integrand

can be represented by a polynomial in even powers of r, then through

-_211 - K(r) ] _ 2m
e = _ b rm (19)

the powers of cos (_2 - _1 )' which appear because of equation (18), can

be represented by the cosine sums of the multiple arguments, and one

obtains H(_) as a sum of partial integrals

2_ 2w 1 1
eT_(D1

C08 ¢2 )°2
C08

Hmns(_) = f f f f co8 n(¢2-¢ 1)
0 0 0 0

81 82

x 01 p2 doldo2d_ld¢2 , (20)

where 81 = 2(m - 8) - n + 1 , (21)

s 2 = 2s + n + I , (22)

n < m < _ , (23)

and 0 < 8 < m - n (24)

The latter integrals can be solved now utilizing the integral repre-

sentation of the Bessel function J (x), which is
n

2_

f ein@ eix cos ¢d¢ = 2_ in J (x)
n

0

(25)
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Both integrations with respect to ¢I and ¢2 lead to

12_ f2_[_1ein(¢2-¢1)+ _l-e-in(¢_'¢")zl ] e_" (pl cos _I - 02 cos ¢2 ) d¢id¢2
0 0

= 2_2[inJn(-_p2).i-nj n(_Pl) + i-nJ_n(-_p2 ).inJn(_pl )]

= _r k Jn(_Pl ) Jn(_P2 )

If one changes the integrating variables from _pj to Vj, then

_ I sI 1 82

Hmn8(_) = 4_2 f0 Jn(_Pl) Pl d°1 fOJn(_P2) 02 dp2

_ 4_ 2 _ sI _ 82

_(81+82 +2) _ Jn(Vi ) vI dv I I0 Jn(V2 ) v 2 dv 2 •

In both integrations with respect-Y76 V1 and v2, use can be made of the

recurs ion formula

(26)

f Jn(v)vn+Pdv -- Jn+l(V)V n+p - (p-l) # Jn+l(v)vn+l+(p-2)dv . (27)

With respect to equations (20), (21) and (22), therefore, one can set

p = 81 - n = 2(m.- n - 8) + 1 , (28)

p' = s 2 - n = 28 + I (29)

Noting that p and p' are odd numbers, p can accordingly be represented by

the number 2N + 1. The successive applications of the recursion formula

(27) yields

I Jn(v)vn+Pdv = Jn+l(v)vn+P - (p-1)Jn+2(v)v n+p-1

+ (p-l) (p-S)Jn+3(v)vn+p-2 - (p-l) (p-3) (p-5)Jn+4(v)v n+p-3

• . cV)v+ " + (-2)NN! Jn+N+1

If one defines the function @(_;) according to

(30)

Qmn8 (_) = _- (n+p+l) / Jn (v)vn+Pdv
0

= i Jn+:r_) - Jn+s_) + Cp-:)Cp-s)jn+SC_)_"

_ ep-1)ep-sjep-5)an+4a) +... +
(-2)NNI

N+I Jn+N+1 (_) ' (31)
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and a related function @'(_), in which p' replaces p and N' = s replaces

N, then one obtains, because of the relationships (28) and (29),

¢ ,

Qmns(_ ) , ¢_) = -(2m+4) f Jn(v)vn+Pdv I J (v)v n+p dvQmns n '

and 0 0
F

H--mns(_) -- 4w 2 Qmns(_) Qmns (¢)
(32)

shall be normalized such that it will have a value of 1.0 on axis

for an aberration-free image. With m = n = s = 0, p = p' = 1, (32)

becomes

2 _2 [2j ! (_)/_]2HO00(¢) = 4_ 2 QO00(¢) =

The required normalization. Ho00(O) = 1 is thus obtained by elimi-

nating the factor w2. Finally, the total irradiance H(_) is given as a sum

of all the individual contributions of the polynomial set

m m-n

-#(_) = 4 _ _ _ bnamnsQmns(_) Q_ns(_). (33)
m=O n=O s=O

a denotes a coefficient which results from a binomial development of
ntis

2m
r and the transformation of the powers of the cosine terms into

trigonometric sums.

We forgo presentation of the complete equation for the triple summa-

tion, which would be quite involved, since the number of terms increases

rapidly with V. On the other hand, a value of V of about 6 to 8 is needed

in approximating an oscillating correlation curve of the form shown in

figure 2. Figure 4 shows the results of a polynomial representation with

= 8, which should reproduce the average characteristics of the described

correlation curves. The curve K(r) shown in figure 4 was obtained by

inverting the approximation to the exponential (19), for the case*

= 0.24_ = 0.7540. This function, furthermore, satisfies the constraint

of equation (14). For other values of e, the polynomial coefficients bm

vary accordingly, and it can be seen that the correlation curves deter-

mined by inverting equation (19) are no longer exactly identical. On the

whole, the quality of the polynomial fit decreases with increasing values

of a.

* This corresponds to the smallest value treated in reference 2.
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Figure 4 Polynomial approximation of a correlation func-

tion of the type shown in figure 2.

It can be recognised from figure 4 that difficulties are encountered

in reproducing the beginning portion of the empirical curve, with the

rapid variation of curvature and steep slope in the vicinity of r = 0;

this means that a many-termed polynomial is required. Similarly, the short

oscillations at the end of the curve probably do not entirely correspond

with reality; however, this regfoncannot be evaluated experimentally with

any degree of reliability. Nei_hgr of the identified deviations are con-

sidered to be of grave significance, since in the regions of poor approxi-

mation,the frequency distribution @Cr), as has been shown, falls to zero,

so that the value of the integral H(_) is not seriously falsified. This is

further supported by the accuracy comparison in connection with figure l,

which is based on similar circumstances, although in somewhat milder form.

Irradiance distributions were calculated for various values of o,

using correlation functions of the described forms. The results are

presented in figures 5 - 9. For comparison, the results calculated from

equations (7) and (9) of Scheffler are presented for the value R/_ = 5,

which Sheffler used in his own work, along with R/_ = 10. The latter value

would have led to even greater differences from the new results. Since for

= 0 the results are identical, the discrepancies become increasingly

more pronounced as the value of _ increases. To be sure, the correlation

function illustrated in figure 4 still leads to an irradiance distribution

with characteristics which are typical of random wavefronts, as has been
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published frequently,6'2'10 i.e., an attenuated diffraction distribution

and a superimposed flat supplementary distribution. However, this charac-

teristic is now clearly less pronounced. There is found, namely, a flat-

tening of the diffraction core, while of the diffraction minima, essen-

tially only an indication of the first minimum remains. Beyond the weak

secondary maximum, the irradiance drops more rapidly than for the Gaussian

correlation function. There is therefore less energy spread out, which

results in the central maximum remaining higher. The total energy within a

given circle is thus increased, and this is especially important for

photography of stars and related tasks. The effect on the achievable

angular resolution is less clear. A theoretical criterion for the spread

of the image, such as the radius _ at which the irradiance has dropped to

a given fraction of the maximum value, would indicate a worse angular

resolution. However, such a criterion is hardly sufficient, if the maximum

irradiance at the axis has been reduced as far below that of the aberra-

tion free image as in the cases with larger values of _.

For evaluating the quality of telescope mirrors, it has proven useful

to consider the percentage fraction of the energy which is concentrated by

the mirror inside a circular area with a specified radius _. The specifi-

cation of requirements on the instrument manufacturer, then, will usually

have prescribed the encircled energy values for various radii which cor-

respond to specified angular diameters of star images. This leads to an
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Figure I0 Encircled energy L in the diffraction image for

the correlation function of figure 4.

overspecification, however, since if one can assume, as has been shown

here, that the empirical correlation functions of the surface irregulari-

ties lead only to slight differences, then the functional development of

the average expectation value of the encircled energy L(_) as a function

of _ is already fixed through the single parameter o. It would therefore

be more realistic to orient specifications of the kind mentioned above

toward well-founded encircled energy curves. Such curves are shown in

figure i0, and are the results of integration by zones of the irradiance

curves given earlier. These encircled energy curves should be especially

useful for practical applications. They show a bulge in the region where

otherwise the undisturbed first diffraction minimum would occur; the bulge

is especially pronounced for small values of o, and indicates that there

is already a significant image degradation. Since the encircled energy

requirements established for astronomical purposes start with lower limits

which are never under 50 peroent, but on the contrary usually lie above

that value, this bulge is of grave significance with reguard to quality

requirements.
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Comparison of the curves L(_) with results which have been published

for the familiar axially symmetric aberrations shows clear differences not

only in the general shape of the curves, but also in the average quality

of the encircled energy. Using the same parametric values of _ for compar-

ison, the results of Focke lh and Barakat 15 for zonal spherical aberration,

and of the latter also for simple spherical aberration, show more favor-

able encircled energy values, while Wolf's investigation 16 of the devia-

tion from best focus, viewed roughly in the average, show a tendency to

somewhat degraded encircled energy with increasing q. With such compari-

sons, however, it should be noted that with large values of _, the curves

L(_) calculated here become somewhat uncertain, due to the reduced quality

of the polynomial fit of equation (19). Presumably the correct values of L

are somewhat lower, especially in the upper region. Other interesting

results and oppertunities for comparison are proferred by the work of

Barakat 17 Shannonl8 and Tschunko 19 The latter work though treats

artificially generated surface irregularities, which bear no direct

comparison to those postulated here.

At this point, I would like to express my appreciation to Mr. K. P.

Zimmer and Mr. E. D. Knohl for the development of the computer programs

and for performing the computations. I would also like to thank Mr. C. H.

Ktthne and Dr. R. Wilson for their useful discussions.

APPENDIX: WITH REGARD TO THE VALIDITY OF EQUATION (5)

The relationship (5) is rigorously valid only for a Gaussian distri-

bution of the phase disturbance S-.F0r other distributions it represents a

very good approximation, so long as the deviations from a Gaussian distri-

bution are not large. Even gross deviations produce only moderate errors,

as is shown by the example of a symmetrical triangular distribution

(Simpson's distribution) for the same variance c 2. In this case, the

right side of equation (5) is replaced by

I - cos {_[I_(I - _)]I/2}

6_ 2 (I - K)

The following table shows that despite the drastic difference between

L
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the two distributions, the average functions under consideration diverge

noticeably only for large values of o2(1 - K).

TABLE

THE AVERAGE VALUES OF THE COINCIDENCE MAGNITUDE

exp {i[S(Yl,Z 1) - S(Y2,z2)]}

o2(1 - K) 0.25 0.50 1.00 1.50

Gaussian Distribution 0.77880 0.60653 0.36788 0.22313

Triangular distribution 0.77370 0.58997 0.32474 0.16141
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Appendix B

SURFACE ROUGHNESS MEASUREMENTS TECHNIQUES

This memorandum was prepared by Dr. James C. Wyant of the University of Arizona

Optical Sciences Center under a consulting agreement to Itek for NASA contract No. NAS8-29949.

The latter is the LST phase B study, and Dr. Wyant's memo was written in connection with the

S.R. & T. task concerning specific surface measurement techniques. SLace it also serves the

purposes of the present study, we include a copy here. Both contracts are ,_4th the same customer.
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Memo to: W. Wetherell

From: J. C. Wyant

Subject: Surface Roughness Measurement Techniques

Date: October 27, 1974

In this memo I describe and compare eight surface roughness measurement

techniques. The eight techniques are: 1. LUPI, 2. A.C. LUPI, 3. Multiple

beam interferometer, 4. Fringes of equal chromatic order [FECO), S. Lyot

test (sometimes called Zernike phase contrast test), 6. Central dark

ground method (CD_O, 7. A. C. Fizeau interferometer Cthe system described

by Jay Eastman at the last OSA meeting), and 8. A. C. differential

interferometers. As I understand, you are interested in surface roughness

amplitudes and periods which vary by two orders of magnitude from 500 A°

P-V to 5 A° P-V and I00 mm to about I mm, respectively. I believe there is

more than one method available which has the capability of making these

measurements. The measurement problem is simplified somewhat since

you are interested mostly in the surface statistics rather than a detailed

surface contour map. My recommendations are given in the conclusion

section at the end of this memo.
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LUPI

Since the LUPI is well known to you I will not go into its operation,

and I will only comment on its surface roughness amplitude and frequency

measurement capability.

I believe that under good conditions, namely vibration isolation

and probably in a vacuum tank, a LUPI has a P-V surface measurement

capability of approximately 200 A°, which corresponds to approximately

1/15 fringe. Samples can be taken either along a line perpendicular

to the fringes, or preferably along one fringe. The reason it is prefered

that samples be taken along a fringe is that if data is taken along

a line perpendicular to the fringes only one dimensional resolution

is being utilized for measuring both sample position and surface contour,

while if data is taken along a fringe the positional resolution is in

the direction of the fringe and surface contour is obtained from resolution

perpendicular to the fringe. Since two dimensional resolution is utilized,

in practice more sample points can be obtained across the sample. Naturally

the average distance between fringes has to be measured in order to

calculate the surface height variations. I suspect that from 100 up to

perhaps SO0 data points could be taken along a fringe.

In order to obtain the 200 A° surface measurement capability the

wavefront deformation introduced by the interferometer must be subtracted

by using a technique such as the one developed at Itek consisting of

analyzing data obtained by rotating and translating the surface under test.

The 200 A° P-V surface measurement capability is probably determined
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by the vibrations in the system. In the testing of a short radius of

curvature mirror it may be possible to reduce the 200 A° P-V error by a

factor of two. One method of increasing the measurement accuracy and

perhaps also the number of samples would be to use an AC LUPI.

m
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AC LUPI

m

u

The basic difference between a conventional interferometer and an

AC or heterodyne interferometer is that in an AC interferometer the two

interfering beams have slightly different optical frequencies. Possible

methods of obtaining two coherent beams having different optical frequencies

are illustrated in Figure i and include reflecting one of the beams off

U

m

m

m

a moving mirror, transmitting a beam twice thru a rotating ¼ wave plate

(or once thru a rotating ½ wave plate), using a Zeeman laser which emits

two beams having different frequencies, or using a moving grating or a

Bragg cell which doppler shifts the light in the diffracted order.

Regardless of how the two beams having different optical frequencies are

i

produced, when the two beams are interfered, the irradiance of the

resulting interferogram varies sinusoidally with time. By using either

an array of detectors in the interference plane, or one stationary detector

and one scanning detector, electronic phase measuring techniques can be

used to measure the relative phase differences in the interferogram plane.

= =

U

D

m
I

This technique offers a major improvement over a conventional LUPI in that

better phase measurement accuracy can be obtained and additionally many

measurements can be taken in a short period of time and processed

J

electronically to average out the effect of vibration and turbulence

and thus increase the accuracy of the measurement even in a less than ideal

=_

B-6

environment. An additionally good feature is that surface departure

information is no longer extracted from the fringe deviation from straightness.

Thus, if N samples are to be taken across a pupil, the scanner used to

move the detector around needs to have only N one-dimensional resolution

points.
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Many methods of making an AC LUPI exist. One possible method is

shown in Figure 2. In this setup the light exiting a conventional LUPI

is incident upon a Bragg cell. The angle between the reference beam and

the test beam is selected such that the zero order o£ the test beam and

the first order of the reference beam leave the Bragg cell at the same angle.

Since the zero order of the test beam is not doppler shifted and the first

diffracted order of the reference beam is doppler shifted an amount f,

the drive frequency of the Bragg cell, the two interfering beams have

different optical frequencies and electronic phase detection can be used.

One of the detectors would be stationary and the second detector would

scan the image of the test surface in the desired fashion. Other beams

leave the Bragg cell, but they all leave at an angle different from

thedesired two beams and can be eliminated by placing a small aperture

in the appropriate position in the focal plane of the lens after the Bragg

cell such that the aperture transmits only the two beams of interest. The

diverger in the LUPI could of course be removed for the testing of

plane mirrors.

I think that with an AC LUPI it would be possible to obtain up to

500 samples across an aperture and a measurement accuracy of at least

50 A°, probably even better. To obtain these results the errors in the

interferometer must first be calibrated and subtracted from the test results.
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Laser _,

Bragg

I Bragg
Phase cell
meter

Reference_'_

I

Test A

I
if

Reference beam at freq. fo + f
Test beam at freq. fo

Reference beam at freq. fo
Test beam at freq. fo - f

Figure 2. One possible AC LUPI.
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Multiple Beam Interferometry

Multiple beam interferometry is characterized by its very sharp

fringes. If fringe position data is obtained with the naked eye I think

that a multiple beam interferometer has a distinct advantage over a two

beam interferometer. However, if a more sophisticated way of measuring

fringe position, such as a scanning microdensitometer, is used, I do not

believe the sharp fringes obtained using a multiple beam interferometer

offer any appreciable advantage. This is partially borne out by the

fact that while Perkin Elmer uses multiple beam interferometry almost

exclusively, and Itek uses two beam interferometry, both companies appear

to have essentially the same measurement accuracy. _itiple beam

interferometry has the disadvantage that the surfaces under test must be coated.

Two types of multiple beam interferometers are the Fizeau and the

P.E. SWIM. 1 I think the SWIM and LUPI give similar accuracy, while the

Fizeau, whether multiple beam or not, might give better results by

a factor of 2 or more since effects of vibration and turbulence are

eliminated. The Fizeau does offer the problem that surfaces up to

only 12 inches or so in diameter can be measured.
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FECO Test

= ,

L .

A FECO interferometer is basically a multiple beam interferometer

in which the test sample is focused on the entrance slit of a spectrograph.

The output of the spectrograph gives the surface profile. A schematic

diagram of a FEC0 interferometer is shown in Figure 3. A white light

source from a point source Z is collimated by lens L1 and reflected

to the reference surface and the test surface (i.e. multiple beam interferometer,

I) by beam splitter B. Both the reference surface and the test surface

are coated to have a reflectance of about 90%. The light reflected

from the reference and test surfaces_ passes thru the beam splitter, and

lens L2 focuses an image of I on entrance slit S of a spectrograph.

The white light is dispersed by the spectrograph and a spectrum containing

interference fringes is formed in the focal plane F which is conjugate

to I. Each fringe shown in F gives the profile of a line, or actually

a slit, of the difference between the test piece and the reference

surface. The profile line in the Ou£put of the spectrograph can be

converted to the departure of the test surface from the reference surface

by using the technique described in reference 2.

There is one major differencc between a Fizeau multiple beam interfcromcter

and a FECO interferometer. The difference being that in a multiple

beam interferometer each fringe is a contour line, i.e. the loci of points

for which the difference between the test surface and the reference

surface is a constant number of wavelengths and the only way information

can be obtained about the surfaces for points between fringes in a

B-11
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multiple beam interferogram is to move the fringes around by either

changing the distance between the test surface and the reference surface

or by changing the wavelength. With the FECO interferometer the portion

of the surface for which the profile is obtained can be easily selected,

i.e. the profile is obtained for the portion of the surface which is

focused on the spectrograph slit.

As you know, the Bennetts have been using the FECO interferometer

for measuring surface roughness and they described some of their work at

the latest OSA meeting. I am sorry that at the time I am writing this

memo I do not have access to their latest work. They are sending me

information, but I have not received it yet.

As Jean Bennett described at the last OSA meeting, they have developed

a FECO interferometer that can resolve height differences of under 5 A°

with a lateral resolution limit of about 2 microns. Wavelengths are

measured at 512 equally spaced points along the length of an interference

fringe which corresponds to a total distance of 1 mm on the test surface.

They appear to be ahead of everyone else on their measurement techniques.

The Bennetts can look at a total sample distance of only 1 mm since

they want a lateral resolution of only a few microns. Since you do not

have this lateral resolution requirement you can look at much larger

samples up to i, I0, or perhaps even 30 cm. You would simply set up a

normal multiple beam interferometer using a small white light source

and image the sample onto the entrance slit of the spectrograph.

My main compl_int about {i_e FECO test is that the sample must be coated.

B-13



Perhaps for the spatial frequencies you are interested in this is not

a critical factor, but I am not 100% convinced that at the small amplitude

variations it can always be assumed that the coating follows the surface

sufficiently closely.
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Lyot Test and Central Dark Ground Method

r_

Both the Lyot test (often called Zernike test) and the central dark

ground method provide means of measuring the surface roughness of polished

surfaces. The Lyot test gives a linear relationship between irradiance and

height variation of the surface under test. The central dark ground

method (CDGM), in which a small stop is used to block the zero order

spectral component, can give both the point by point surface height

variations and with a single measurement the rms surface height variations.

The Lyot test and the CDGM test are similar and can be analyzed as follows:

Let the amplitude of the light reflected by the test surface be given by

If Z(x,y) is the height variations of the surface being looked at in

reflection, then

#_

I

] mn

In the following it is assumed that the magnification is unity and

that the imaging optics is large enough to collect all the diffracted rays

that carry any appreciable energy.

In the Lyot test the light reflected from the element under test is

brought to focus and a mask is placed at the focus as shmcn in Figure 4.

The mask which covers the central portion of the Airy disk transmits an

amount a of the undiffracted light and retards the phase of the undiffracted

light by either !_wave (positive phase contrast) or 3/4 wave (negative

phase contrast) relative to the phase retardation of the diffracted light.

For positive phase contrast the irradiance as a function of x and y in

B-15



Figure 4. Surface roughness measurement by Lyot test.
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the image plane is given by

i,. + Gt C4)

C33

The t2 in the above equation corresponds to the strong wave component
o

that is reflected from the sample without change, while the a exp(i%Y/2)

is the portion of this undiffracted light that is transmitted with a

90° phase change.

As long as _K<a, the observed irradiance is linearly related to the

height variations of the surface. [If I=I o when _=0, then

or

CS)

(6)

So as long as a, the zero order amplitude transmission of the mask is

known, _(x,y) can be determined. . , .

If 6¢¢a there is not a linear relationship between observed irradiance

and the height variations of the surface. In this case the relationship between

and I can in most cases of interest be a_proximated as
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(7)

m

J

or

(s)

Table I shows different values of irradiance ratios I(x,y)/I °

obtained for different values of 6 and a. Eq. (7) was used for all the

calculations. For the irradiance ratios below the horizontal lines in the

table there is a linear relationship between irradiance and height variations

and Eq(5) could have been used for the calculations. The relationship between

a and optical density D shown in the table is D= log (I/a2).

It should be noted that in Figure 4 the light diffracted at the

edge of the test piece was eliminated by placing at the image of the

test piece an aperture smaller than the image. From the analysis you

recently performed it appears that this mask is not needed if the test

sample is illuminated with a suitably apodized wavefront, instead of a

wavefront having uniform intensity as is generally used.

Recently a modification in the Lyot mask was introduced which extends

3
the linear operating range by about a factor of 5 or 4. In tile modified

Lyot test the undiffracted light is phase shifted by 45 ° and is unattenuated,

while the diffracted light is attenuated by a factor of_. Under these

conditions the irradiance in the image plane is given by
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C9)

Then

Io

Although the modified Lyot test has a slightly larger linear operating

test, the._ amplitude attenuation of thera_Ige than the regular Lyot

diffracted light means that a given change in the surface height variations

changes the irradiance ratio by only half as much as in the case of the

unattenuated regular Lyot test.

The CDGM test is the same as the Lyot test except now the mask

transmits none of the undiffracted light. Thus, the irradiance in the

image plane is given by

:1:(__}=] exp;0%_) -I / _,

(10)

(11)
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The observed irradiance is no longer linearly related to the height

variations of the surface, however there is a known relationship. If the mask

is removed the irradiance, Io, in the image plane is t2o" The ratio of

irradiance with mask to irradiance without mask is given by

I(x,y) with mask
I without mask

So by measuring I(x,y), one obtains _(x,y).

ratios as a function of Z(x,y) and _(x,y).

= _2 (x,y)

Table II gives irradianee

(12)

Instead of measuring the height variations of the sample point by

point, the CDGM test can be used to measure the rms height variation, Z(x,y).

The total amount of flux, F, in the image plane is given by

F = JI(x,y) dx dy

= ft_ _2(x,y) dx dy (13)

If the mask is removed the flux in the image plane is /t_ dx dy. The

ratio of flux with mask to flux without mask is

F with mask = Jt_ 62(x,y) dx dy = (6rms)2

F without mask ft_ dx dy (14)

To obtain an accurate measurement of 6rms it is necessary to block

out the light diffracted by the edge of the sample. This is easily

accomplished by reimaging the sample onto an aperture smaller than the

image of the sample, as shown in Figure 5. Your recent results indicate

that if the sample is illuminated with an appropriately apodized beam

essentially the same results are obtained without the mask.
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Table II which gave the irradiance ratios as a function of Z(x,y)

also gives the flux ratios as a function of Z . For example, if Zrm s
INS

is 50 A° then the flux ratios for a reflection test would be 0.016 i.e. 1.6%

of the light is diffracted (scattered) out of the direct beam. The

ratios are small for small rms surface variations and would be hard

to measure in practice. However, in a sense, this is good. The £1ux

ratio is a measure of the Strehl ratio. For small surface errors the

Strehl ratio differs from the ideal value of unity by an amount equal

2
to 06rm s)

B-22
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TABLE II: IlkO_ADIANCE RATIOS FOR CDCH TEST

v

u.

Surface Height
variation Z(x,y)

200 A°

100 A°

50 A°

25 A°

I0 A°

5 A °

1 A °

_(x,y) for reflection
off surface

0.5

0.25

0.125

0.0625

0.025

0.0125

O.0025

CDGM Test

Irradiance Rauio

0.25

0.063

0.016

0.0036

0.0006

0.0002

0.000006

Irradiance Ratio = _2(x,y)

IRRADIANCE WITH CDGM MASK

IRRADIANCE WITHOUT CDCM b_kSK
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AC Fizeau Interferometer

w

At the last OSA meeting Jay Eastman described a scanning Fizeau

interferometer. Figure 6 shows one possible configuration. The instrument

is similar to conventional Fizeau _rferometers except the reference

surface is oscillated by a piezoelectric transducer, which causes the light

reflected by the reference surface to be doppler shifted in frequency.

Therefore, the two interfering beams have different optical frequency

and the irradiance of the interferogram varies sinusoidally with time.

Hence, AC heterodyne phase detection can be used in the manner described

in the section above on the AC LUPI. In the instrument built by Eastman

rms surface roughness of 20 A° could be measured for a 1 mm strip of the

surface. By sacraficing lateral resolution, the sample size could probably

be increased to 1 cm. For larger surfaces it might be hard to control

the oscillation of the reference surface.

The surfaces would not need to be coated. The light source could

be selected such that the coherence length is short enough that the only

interference present would be between light reflected by one surface of

the reference piece and light reflected by the test surface. Light reflected

by other surfaces would not effect the results.

The AC Fizeau has the advantage over the AC LUPI that setup vibration

and turbulence would produce much less effect, just as in a conventional

Fizeau. The AC Fizeau does have the problem that only relatively small

samples could be tested.

My main complaint about the AC Fizeau interferometer is the problem in

oscillating the reference surface without distorting its shape. One way of

getting around this problem would be to use an AC differential interferometer.
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AC Differential Interferometers

m

= =

The data obtained from a differential interferometer is slightly

different from that obtained from a Fizeau. The AC Fizeau gives the contour

difference between the test surface and the reference surface, while

the AC differential interferometer is a lateral shear interferometer and

gives the height difference between points on the test surface separated

the shear distance. If the shear is large compared to the largest period

surface structure being looked at, the surface statistics measured by

the two interferometers are essentially the same.

Several types of AC differential interferometers exist. One type

is the AC polarization interferometer sho_m in Figure 7. In the figure

S is the light source, which would probably be a Hg lamp, L1 is a collimating

lens, and PI and S1 are a polarizer and Savart plate, respectively.

The Savart plate has the property that an incident ray is sheared in two:

an ordinary ray and an extraordinary ray. Thus, if it is illuminated

with a beam of light, two laterally displaced beams will exit the plate.

The two sheared beams have orthogonal polarization. P1 and S1 can be

eliminated if a slit source is used instead of an extended source.

P2 and S2 are another polarizer and Savart plate. S2 converts the

beam reflected by the sample into two beams laterally displaced a distance

AS. The two displaced beams have orthogonal polarization. Let one

polarization be in the x direction and the other in the y direction.

Furthermore, let 6(x,y) be the phase difference between the two beams.

If Z(x,y) is the height variations of the sample then
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It can be shown that if a ¼ wave plate is placed after the Savart plate

and the slow axis of the plate makes an angle of 45° with respect to the

x axis, the light leaving the ¼ wave plate will be linearly polarized

at an angle _(x,y)/2 from the slow axis of the ¼ wave plate. If the

polarizer placed after the ¼ wave plate is rotated at angular frequency

6_, the photodetector sees a signal proportional to

Thus, AC phase detection can be used to measure _(x,y).

A second AC differential interferometer is illustrated in Figure 8

and described more fully in reference 4. In this interferometer both

the shear and modulation are obtained by using two acousto optic Bragg

cells which are driven at different frequencies.

AC differential interferometers show a lot of potential for measuring

surface roughness. The sample would not have to be coated. The back

surface of the sample could have the appropriate shape to throw light

reflected off the back surface out of the interferometer. Almost any

size sample could be tested by placing the required expanding optics

( a diverger for large spherical surfaces, a microscope for small surfaces,

etc) between the shearing device (Savart plate or Bragg ce11) and the surface

under test. Although the optics should be good they do not have to be

= =
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unreasonably good since an extended, or at least a slit source, is being

used. The phase measurement is made in a plane conjugate to the sample,

and due to the source's finite size, aberrations in the instrument

which occur in a plane different from either the sample plane or a plane

conjugate to the sample plane are smeared across the sample and the

biggest effect is to reduce the lateral resolution capability of the

system. (What I say above can be seen to be true by observing the fact

that dust in interferometers have less effect on test results as the source

size increases.) The above results suggest that turbulence has less

effect on the results for a differential interferometer test than for

a LUPI test.

Perhaps the largest source of error in AC differential interferometers

is produced by non uniform frequency modulation of the output signal. I

do not know how uniform a signal can be produced using a rotating analyzer

to generate the signal. I do know that Bragg cells have shown a uniformity

of at least i/lO0 wave with time, but I do not know if the phase gradient

across the diffracted beam is this good (i.e. are the grating planes in

the Bragg cell equally spaced to within 1%).
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Conclusions

The LUPI is probably good for measuring surface variations up to

1/15 fringe or 200A°. Probably a minimum of I00 sample points across

the aperture can be obtained. To obtain these results errors in the

interferometer would have to be subtracted from the test results and

vibration isolation and a vacuum chamber would be required.

An AC LUPI is a good way of improving the measurement accuracy

and perhaps increasing the number of sample points which could be obtained

across the sample. A measurement accuracy of SO A° or better P-V could

be obtained for perhaps as many as 500 samples across the aperture.

Again to obtain these results errors in the interferometer would have to

be calibrated and subtracted from the test results.

Fizeau multiple beam interferometry could probably yield a P-V

accuracy of 50 to 100 A° for i00 or more sample points across the aperture.

However, the aperture size would be limited to about 12 inches diameter.

A SWIM interferometer could increase the maximum allowable aperture,

however this would increase vibration and turbulence problems which would

reduce the accuracy to a point similar to that obtained using a LUPI.

FECO interferometry has been used extensively by the Bennetts and

its performance for measuring small period structure is known. Probably

5 to I0 A° measurement accuracy can be obtained for SO0 sample points

across an aperture for apertures up to 12 inches diameter. _ly main complaint

about the FECO test, which is a complaint about multiple beam tests in

general, is that the sample must be coated.
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The Lyot test looks promising for being able to test large diameter

surfaces with an accuracy of 5 A° for 500 or so sample points across the

sample. Vibration isolation and a vacuum chamber would probably be

required for testing large diameter surfaces. The sample would not

have to be coated if the second surface was made such as to reflect the

beam out of the system.

The CDGM is interesting only because it can provide the rms surface

structure with a single measurement, however it does not have sufficient

sensitivity for the measurements you want.

An AC Fizeau interferometer would probably give surface roughness

measurements good to 20 A° or better for 500 sample points across the

aperture. The interferometer works well with uncoated surfaces. The

largest problem with the interferometer is that only small pieces, maybe

up to 1 cm diameter, can be tested. I am worried about being able to

oscillate the reference mirror without distorting its shape.

AC differential interferometers appear promising. As long as the

lateral shear is greater than the largest period of surface roughness of

interest, surface statistics should be the same as obtained using a

Fizeau interferometer where two surfaces having similar statistics are

o
compared. I think 5 A sensitivity can be obtained. Both small and large

surfaces could be tested. Perhaps for the larger pieces vibration isolation

and a vacuum chamber would improve the results. 500 samples could be

obtained across the aperture. Although the interferometer optics should

be good, if an extended source, or at least a slit source, is used

the interferometer optics would not have to have super quality. The sample
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also does not aeed to be coated.

I think that for the measurements you want, where you do not need

to know exactly where the surface deformation is, but are only concerned

with the statistics, the AC differential interferometer has all the good

characteristics of the AC LUPI, and some better features in that effects

of turbulence, vibration, and optical imperfections in the interferometer

are reduced. In my slightly biased opinion, I think the AC differential

interferometer is the most promising technique for making measurements

across the wide rmlge of amplitude and period of surface structure you

are interested in and could even look at higher frequency structure

than what you are interested in. Even micron type ripple could be

measured by using a microscope to image the sample on the detector plane.
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Appendix C

PERFECT i_EiqS PSF OVERLAYS

The attached transparencies show the PSF's for a perfect lens, both obstructed and unob-

structed. The obstructed lens has a central obstruction diameter ratio of 0.324, matching the

A.A.T. primary. The other two PSF's are plotted on a radius scale of 100 and 50 Airy radii,

matching the two scales most commonly used in the text.

These transparencies can be layedon Isp of the figures in Section 4 to show how the PSF

is modified by the form of wavefront error under discussion. Two sets of the overlays are pro-

vided; the reader may wish to cut the individual charts apart for convenience.
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